Comparing oil budgets

from datetime import datetime, timedelta
import numpy as np
import matplotlib.pyplot as plt
from opendrift.models.openoil import OpenOil

Comparing the weathering and properties of different oils at different wind speeds

oiltypes = ['GENERIC HEAVY CRUDE', 'GENERIC MEDIUM CRUDE', 'GENERIC LIGHT CRUDE',
            'GENERIC DIESEL']
wind_speeds = [5, 10]
hours = 24
b = {}
viscosities = {}
densities = {}
water_fractions = {}

for wind_speed in wind_speeds:
    for ot in oiltypes:
        o = OpenOil(loglevel=50)
        print('%s m/s - %s' % (wind_speed, ot))
        o.set_config('environment:constant:x_wind', wind_speed)
        o.set_config('environment:constant:y_wind', 0)
        o.set_config('environment:constant:x_sea_water_velocity', 0)
        o.set_config('environment:constant:y_sea_water_velocity', 0)
        o.set_config('environment:constant:land_binary_mask', 0)
        o.set_config('general:use_auto_landmask', False)
        o.set_config('processes:dispersion', False)
        o.seed_elements(lon=0, lat=0, time=datetime.now(), number=1000, oil_type=ot)
        o.run(duration=timedelta(hours=hours), time_step=600)
        b[ot] = o.get_oil_budget()
        # Get viscosity and density
        kin_viscosity = o.history['viscosity']
        dyn_viscosity = kin_viscosity * o.history['density'] * 1000 # mPas
        viscosities[ot] = dyn_viscosity.mean(axis=0)
        densities[ot] = o.history['density'].mean(axis=0)
        water_fractions[ot] = o.history['water_fraction'].mean(axis=0)

    time, time_relative = o.get_time_array()
    time = np.array([t.total_seconds() / 3600. for t in time_relative])

    figw,(axevap, axsurf, axsub) = plt.subplots(3,1)
    figp,(axdens, axvisc, axw) = plt.subplots(3,1)
    for ot in oiltypes:
        axevap.plot(time, 100*b[ot]['mass_evaporated']/b[ot]['mass_total'], label=ot)
        axsurf.plot(time, 100*b[ot]['mass_surface']/b[ot]['mass_total'], label=ot)
        axsub.plot(time, 100*b[ot]['mass_submerged']/b[ot]['mass_total'], label=ot)
        axdens.plot(time, densities[ot], label=ot)
        axvisc.plot(time, viscosities[ot], label=ot)
        axw.plot(time, water_fractions[ot], label=ot)

    for ax in (axevap, axsurf, axsub, axdens, axvisc, axw):
        if ax in (axevap, axsurf, axsub):
            ax.set_ylim([0, 100])
        ax.set_xlim([0, hours])

    axevap.set_title('Wind speed %s m/s' % wind_speed)
    axsurf.set_ylabel('Surface [%]')
    axevap.set_ylabel('Evaporated [%]')
    axsub.set_ylabel('Submerged  [%]')
    axsub.legend()
    axsub.set_xlabel('Time [hours]')

    axdens.set_title('Wind speed %s m/s' % wind_speed)
    axvisc.set_ylabel('Viscosity [mPas]')
    axvisc.set_yscale('log')
    axdens.set_ylabel('Density [kg/m3]')
    axw.set_ylabel('Water fraction')
    axw.set_xlabel('Time [hours]')
    axw.legend()
    plt.tight_layout()
    plt.show()
  • Wind speed 5 m/s
  • Wind speed 5 m/s
  • Wind speed 10 m/s
  • Wind speed 10 m/s
5 m/s - GENERIC HEAVY CRUDE
5 m/s - GENERIC MEDIUM CRUDE
5 m/s - GENERIC LIGHT CRUDE
5 m/s - GENERIC DIESEL
10 m/s - GENERIC HEAVY CRUDE
10 m/s - GENERIC MEDIUM CRUDE
10 m/s - GENERIC LIGHT CRUDE
10 m/s - GENERIC DIESEL

Total running time of the script: (1 minutes 54.546 seconds)

Gallery generated by Sphinx-Gallery