Note
Go to the end to download the full example code.
Analysing output from Parcels (Zarr format)#
import matplotlib.pyplot as plt
import xarray as xr
import trajan as ta
ds = xr.open_dataset('../tests/test_data/parcels.zarr', engine='zarr')
Print Xarray dataset
print(ds)
<xarray.Dataset> Size: 123kB
Dimensions: (trajectory: 100, obs: 61)
Coordinates:
* obs (obs) int32 244B 0 1 2 3 4 5 6 7 8 ... 53 54 55 56 57 58 59 60
* trajectory (trajectory) int64 800B 700 701 702 703 704 ... 796 797 798 799
Data variables:
lat (trajectory, obs) float32 24kB ...
lon (trajectory, obs) float32 24kB ...
time (trajectory, obs) datetime64[ns] 49kB ...
z (trajectory, obs) float32 24kB ...
Attributes:
Conventions: CF-1.6/CF-1.7
feature_type: trajectory
ncei_template_version: NCEI_NetCDF_Trajectory_Template_v2.0
parcels_mesh: spherical
parcels_version: 2.4.0
Print trajectory specific information about dataset
print(ds.traj)
=======================
TrajAn info:
------------
100 trajectories [trajectory_dim: trajectory]
61 timesteps [obs_dim: obs]
Time variable: time['trajectory', 'obs'] (2D)
Timestep: 4:00:00
Time coverage: 2022-10-12T18:00:00.000000000 - 2022-10-22T18:00:00.000000000
Longitude span: 39.88391876220703 to 40.14458084106445
Latitude span: 17.2540340423584 to 17.726621627807617
Variables:
lat [latitude]
lon [longitude]
time [time]
z [depth]
=======================
Basic plot
Total running time of the script: (0 minutes 3.478 seconds)