Source code for opendrift.readers.basereader.structured

import numpy as np
import pyproj
from scipy.ndimage import map_coordinates
from abc import abstractmethod

from opendrift.readers.interpolation.structured import ReaderBlock
from .variables import Variables

import logging
logger = logging.getLogger(__name__)

[docs] class StructuredReader(Variables): """ A structured reader. Data is gridded on a regular grid. Used by e.g.: :class:`opendrift.readers.reader_netCDF_CF_generic.Reader`. Attributes: projected: is `True` if :class:`.fakeproj.fakeproj` is used because of missing projection information. The data points are assumed to be approximately equidistant on the surface (i.e. in meters). clipped: pixels to to remove along boundary (e.g. in case of bad data). .. seealso:: :py:mod:`opendrift.readers` """ # TODO: should the variables below not be instance variables, and not class variables? clipped = 0 x = None y = None interpolation = 'linearNDFast' convolve = None # Convolution kernel or kernel size # Used to enable and track status of parallel coordinate transformations. __lonlat2xy_parallel__ = None __disable_parallel__ = False def __init__(self): if self.proj is None and (self.proj4 is None or self.proj4 == 'fakeproj'): logger.warning( "No proj string or projection could be derived, using 'fakeproj'. This assumes that the variables are structured and gridded approximately equidistantly on the surface (i.e. in meters). This must be guaranteed by the user. You can get rid of this warning by supplying a valid projection to the reader." ) from scipy.interpolate import LinearNDInterpolator import copy from . import fakeproj # `projected` is set to True if `fakeproj` is used self.projected = None self.shape = None self.proj4 = 'None' self.proj = fakeproj.fakeproj() self.projected = False'Making interpolator for lon,lat to x,y conversion...') self.xmin = self.ymin = 0. self.delta_x = self.delta_y = 1. self.xmax = self.lon.shape[1] - 1 self.ymax = self.lon.shape[0] - 1 self.numx = self.xmax self.numy = self.ymax self.x = np.arange(0, self.xmax+1) self.y = np.arange(0, self.ymax+1) block_x, block_y = np.mgrid[self.xmin:self.xmax + 1, self.ymin:self.ymax + 1] block_x, block_y = block_x.T, block_y.T # Making interpolator (lon, lat) -> x self.spl_x = LinearNDInterpolator( (self.lon.ravel(),, block_x.ravel(), fill_value=np.nan) # Reusing x-interpolator (deepcopy) with data for y self.spl_y = copy.deepcopy(self.spl_x) self.spl_y.values[:, 0] = block_y.ravel() # Call interpolator to avoid threading-problem: # self.spl_x((0, 0)), self.spl_y((0, 0)) else: self.projected = True super().__init__() # Dictionaries to store blocks of data for reuse (buffering) self.var_block_before = {} # Data for last timestep before present self.var_block_after = {} # Data for first timestep after present
[docs] @abstractmethod def get_variables(self, variables, time=None, x=None, y=None, z=None): """ Obtain a _block_ of values of the requested variables at all positions (x, y, z) closest to given time. These will be stored in :class:`opendrift.readers.interpolation.structured.ReaderBlock` and accessed from there. Arguments: variables: list of variables. time: datetime or None, time at which data are requested. x, y: float or ndarrays; coordinates of requested points. z: float or ndarray; vertical position (in meters, positive up) Returns: Dictionary keywords: variables (string) values: 2D ndarray bounding x and y. """
[docs] def prepare(self, extent, start_time, end_time, max_speed): """Prepare reader for given simulation coverage in time and space.""" logger.debug('Clearing cache for reader %s before starting new simulation' % self.var_block_before = {} self.var_block_after = {} if self.time_step is None: # Set buffer large nough for whole simulation logger.debug('Time step is None for %s, setting buffer size large nough for whole simulation' % self.set_buffer_size(max_speed, end_time-start_time) super().prepare(extent, start_time, end_time, max_speed)
[docs] def set_convolution_kernel(self, convolve): """Set a convolution kernel or kernel size (of array of ones) used by `get_variables` on read variables.""" self.convolve = convolve
[docs] def __convolve_block__(self, env): """ Convolve arrays with a kernel, if reader.convolve is set """ if self.convolve is not None: from scipy import ndimage N = self.convolve if isinstance(N, (int, np.integer)): kernel = np.ones((N, N)) kernel = kernel / kernel.sum() else: kernel = N logger.debug('Convolving variables with kernel: %s' % kernel) for variable in env: if variable in ['x', 'y', 'z', 'time']: pass else: if env[variable].ndim == 2: env[variable] = ndimage.convolve(env[variable], kernel, mode='nearest') elif env[variable].ndim == 3: env[variable] = ndimage.convolve(env[variable], kernel[:, :, None], mode='nearest') return env
[docs] def lon_range(self): if not self.global_coverage(): raise ValueError('Only valid for readers with global coverage') if self.xmin < 0: return '-180to180' else: return '0to360'
[docs] def _get_variables_interpolated_(self, variables, profiles, profiles_depth, time, reader_x, reader_y, z): # For global readers, we shift coordinates to match actual lon range if self.global_coverage(): if self.lon_range() == '-180to180': logger.debug('Shifting coordinates to -180-180') reader_x = np.mod(reader_x + 180, 360) - 180 elif self.lon_range() == '0to360': logger.debug('Shifting coordinates to 0-360') reader_x = np.mod(reader_x, 360) elif and self.xmin>0: logger.debug('Modulating longitudes to 0-360 for') reader_x = np.mod(reader_x, 360) # Find reader time_before/time_after time_nearest, time_before, time_after, i1, i2, i3 = \ self.nearest_time(time) logger.debug('Reader time:\n\t\t%s (before)\n\t\t%s (after)' % (time_before, time_after)) # For variables which are not time dependent, we do not care about time static_variables = [ 'sea_floor_depth_below_sea_level', 'land_binary_mask' ] if time == time_before or all(v in static_variables for v in variables): time_after = None if profiles is not None: # If profiles are requested for any parameters, we # add two fake points at the end of array to make sure that the # requested block has the depth range required for profiles mx = np.append(reader_x, [reader_x[-1], reader_x[-1]]) my = np.append(reader_y, [reader_y[-1], reader_y[-1]]) mz = np.append(z, [profiles_depth[0], profiles_depth[1]]) else: mx = reader_x my = reader_y mz = z block_before = block_after = None blockvariables_before = variables blockvars_before = str(variables) blockvariables_after = variables blockvars_after = str(variables) for blockvars in self.var_block_before: if all(v in blockvars for v in variables): block_before = self.var_block_before[blockvars] blockvariables_before = block_before.data_dict.keys() blockvars_before = blockvars break blockvariables_before = variables blockvars_before = str(variables) for blockvars in self.var_block_after: if all(v in blockvars for v in variables): block_after = self.var_block_after[blockvars] blockvariables_after = block_after.data_dict.keys() blockvars_after = blockvars break # Swap before- and after-blocks if matching times if block_before is not None and block_after is not None: if block_before.time != time_before: if block_after.time == time_before: block_before = block_after self.var_block_before[blockvars_before] = block_before if block_after.time != time_after: if block_before.time == time_before: block_after = block_before self.var_block_after[blockvars_after] = block_after # Fetch data, if no buffer is available if block_before is None or \ block_before.time != time_before: reader_data_dict = \ self.__convolve_block__( self.get_variables(blockvariables_before, time_before, mx, my, mz) ) self.var_block_before[blockvars_before] = \ ReaderBlock(reader_data_dict, interpolation_horizontal=self.interpolation) try: len_z = len(self.var_block_before[blockvars_before].z) except: len_z = 1 logger.debug( ('Fetched env-block (size %ix%ix%i) ' + 'for time before (%s)') % (len(self.var_block_before[blockvars_before].x), len(self.var_block_before[blockvars_before].y), len_z, time_before)) block_before = self.var_block_before[blockvars_before] if block_after is None or block_after.time != time_after: if time_after is None: self.var_block_after[blockvars_after] = block_before else: reader_data_dict = self.__convolve_block__( self.get_variables(blockvariables_after, time_after, mx, my, mz)) self.var_block_after[blockvars_after] = \ ReaderBlock( reader_data_dict, interpolation_horizontal=self.interpolation) try: len_z = len(self.var_block_after[blockvars_after].z) except: len_z = 1 logger.debug(('Fetched env-block (size %ix%ix%i) ' + 'for time after (%s)') % (len(self.var_block_after[blockvars_after].x), len(self.var_block_after[blockvars_after].y), len_z, time_after)) block_after = self.var_block_after[blockvars_after] if (block_before is not None and block_before.covers_positions( reader_x, reader_y) is False) or (\ block_after is not None and block_after.covers_positions( reader_x, reader_y) is False): logger.warning('Data block from %s not large enough to ' 'cover element positions within timestep. ' 'Buffer size (%s) must be increased. See `Variables.set_buffer_size`.' % (, str(self.buffer))) # TODO; could add dynamic incraes of buffer size here ############################################################ # Interpolate before/after blocks onto particles in space ############################################################ self.timer_start('interpolation') logger.debug('Interpolating before (%s) in space (%s)' % (block_before.time, self.interpolation)) env_before, env_profiles_before = block_before.interpolate( reader_x, reader_y, z, variables, profiles, profiles_depth) if (time_after is not None) and (time_before != time): logger.debug('Interpolating after (%s) in space (%s)' % (block_after.time, self.interpolation)) env_after, env_profiles_after = block_after.interpolate( reader_x, reader_y, z, variables, profiles, profiles_depth) self.timer_end('interpolation') ####################### # Time interpolation ####################### self.timer_start('interpolation_time') env_profiles = None if (time_after is not None) and (time_before != time) and self.always_valid is False: weight_after = ((time - time_before).total_seconds() / (time_after - time_before).total_seconds()) logger.debug(('Interpolating before (%s, weight %.2f) and' '\n\t\t after (%s, weight %.2f) in time') % (block_before.time, 1 - weight_after, block_after.time, weight_after)) env = {} for var in variables: # Weighting together, and masking invalid entries env[var] = (env_before[var] * (1 - weight_after) + env_after[var] * weight_after)) # Interpolating vertical profiles in time if profiles is not None: env_profiles = {} logger.debug('Interpolating profiles in time') # Truncating layers not present both before and after numlayers = np.minimum(len(env_profiles_before['z']), len(env_profiles_after['z'])) env_profiles['z'] = env_profiles_before['z'][0:numlayers] for var in env_profiles_before.keys(): if var == 'z': continue env_profiles_before[var] = np.atleast_2d( env_profiles_before[var]) env_profiles_after[var] = np.atleast_2d( env_profiles_after[var]) env_profiles[var] = ( env_profiles_before[var][0:numlayers, :] * (1 - weight_after) + env_profiles_after[var][0:numlayers, :] * weight_after) else: env_profiles = None else: logger.debug('No time interpolation needed - right on time.') env = env_before if profiles is not None: if 'env_profiles_before' in locals(): env_profiles = env_profiles_before else: # Copying data from environment to vertical profiles env_profiles = {'z': profiles_depth} for var in profiles: env_profiles[var] =[env[var], env[var]]) self.timer_end('interpolation_time') return env, env_profiles
[docs] def __check_env_arrays__(self, env): """ For the StructuredReader the variables are checked before entered into the ReaderBlock interpolator. This methods makes the second check a no-op. .. seealso:: :meth:`.variables.Variables.__check_env_arrays__`. """ return env
[docs] def xy2lonlat(self, x, y): if self.projected: return super().xy2lonlat(x, y) else: np.seterr(invalid='ignore') # Disable warnings for nan-values y = np.atleast_1d(y) x = np.atleast_1d(x) # NB: mask coordinates outside domain x[x < self.xmin] = np.nan x[x > self.xmax] = np.nan y[y < self.ymin] = np.nan y[y < self.ymin] = np.nan lon = map_coordinates(self.lon, [y, x], order=1, cval=np.nan, mode='nearest') lat = map_coordinates(, [y, x], order=1, cval=np.nan, mode='nearest') return (lon, lat)
[docs] def lonlat2xy(self, lon, lat): if self.projected: self.__lonlat2xy_parallel__ = False return super().lonlat2xy(lon, lat) else: # For larger arrays, we split and calculate in parallel num_elements = len(np.atleast_1d(lon)) if num_elements > 10000 and not self.__disable_parallel__: from multiprocessing import cpu_count from concurrent.futures import ThreadPoolExecutor self.__lonlat2xy_parallel__ = True nproc = cpu_count() logger.debug('Running lonlat2xy in parallel using %d threads' % nproc) # Chunk arrays split_lon = np.array_split(lon, nproc) split_lat = np.array_split(lat, nproc) with ThreadPoolExecutor() as x: out_x = np.concatenate( list(, zip(split_lon, split_lat)))) out_y = np.concatenate( list(, zip(split_lon, split_lat)))) return (out_x, out_y) else: logger.debug('Calculating lonlat2xy sequentially') self.__lonlat2xy_parallel__ = False x = self.spl_x(lon, lat) y = self.spl_y(lon, lat) return (x, y)
[docs] def pixel_size(self): if self.projected: return super().pixel_size() else: lons, lats = self.xy2lonlat([self.xmin, self.xmax], [self.ymin, self.ymin]) geod = pyproj.Geod(ellps='WGS84') # Define an ellipsoid dist = geod.inv(lons[0], lats[0], lons[1], lats[1], radians=False)[2] pixelsize = dist / self.shape[0] return pixelsize
[docs] def get_ocean_depth_area_volume(self, lonmin, lonmax, latmin, latmax): """Get depth, area and volume of ocean basin within given coordinates""" # Extract ocean depth within given boundaries background = 'sea_floor_depth_below_sea_level' rx, ry = self.lonlat2xy([lonmin, lonmax, lonmax, lonmin], [latmin, latmin, latmax, latmax]) rx = np.linspace(rx.min(), rx.max(), 10) ry = np.linspace(ry.min(), ry.max(), 10) data = self.get_variables(background, time=None, x=rx, y=ry) x, y = np.meshgrid(data['x'], data['y']) lon, lat = self.xy2lonlat(x, y) depth = data[background] depth =<lonmin, depth) depth =>lonmax, depth) depth =<latmin, depth) depth =>latmax, depth) volume = np.nansum(depth*self.pixel_size()*self.pixel_size()) area = volume/np.nanmean(depth) return np.nanmin(depth), np.nanmax(depth), np.nanmean(depth), area, volume
[docs] def _coverage_unit_(self): if self.projected: return super()._coverage_unit_() else: return "pixels"
[docs] def _bbox_(self, x, y): """ Find bounding box on grid containing points (x, y) """ ix = (x - self.xmin) / self.delta_x ix0, ix1 = np.min(ix), np.max(ix) iy = (y - self.ymin) / self.delta_y iy0, iy1 = np.min(iy), np.max(iy) ix0 = np.max((self.clipped, ix0 - self.buffer)).astype(int) iy0 = np.max((self.clipped, iy0 - self.buffer)).astype(int) ix1 = np.min((self.numx - self.clipped, ix1 + self.buffer)).astype(int) iy1 = np.min((self.numy - self.clipped, iy1 + self.buffer)).astype(int) return (ix0, ix1, iy0, iy1)
[docs] def _make_projected_grid_(self, lon, lat, eq_eps=1.e-1): """ Make the projected grid in cases where `lon` and `lat` are present as 2D variables, but not `x` and `y` and assert that it is approximately equidistant. Args: eq_eps: tolerance for equidistance checks. """ if self.x is not None or self.y is not None: logger.error("x and y variables already exist!") logger.debug("Finding bounds of reader") assert len(lon.shape) == 2 assert len(lat.shape) == 2 self.X, self.Y = self.lonlat2xy(lon, lat) self.xmin, self.xmax = np.min(self.X[:]), np.max(self.X[:]) self.ymin, self.ymax = np.min(self.Y[:]), np.max(self.Y[:]) self.delta_x = np.diff(self.X).flat[0] self.delta_y = np.diff(self.Y, axis=0).flat[0] self.x = self.X[0, :] self.y = self.Y[:, 0] self.numx = len(self.x) self.numy = len(self.y) self.__validate_projected_grid__(eq_eps)
[docs] def __validate_projected_grid__(self, eq_eps=1.e-1): """ Validate that the projected grid is approximately equidistant. Args: eq_eps: tolerance for equidistance checks. Raises: AssertionError if not equidistant within `eq_eps`. """ assert np.all(np.abs(self.delta_x - np.diff(self.X)) < eq_eps ), "Grid is not equidistant in X direction" assert np.all(np.abs(self.delta_y - np.diff(self.Y, axis=0)) < eq_eps ), "Grid is not equidistant in Y direction" assert np.all( np.abs(np.tile(self.x, (self.X.shape[0], 1)) - self.X) < eq_eps ), "X coordinates are not aligned along Y direction" assert np.all( np.abs( np.tile(np.atleast_2d(self.y).T, (1, self.Y.shape[1])) - self.Y ) < eq_eps), "Y coordinates are not aligned along X direction"
[docs] def _slice_variable_(self, var, indxTime=None, indy=None, indx=None, indz=None, indrealization=None): """ Slice variable depending on number of dimensions available. Args: All arguments can be `slice` objects or index. Returns: `var` sliced using the slices or indexes necessary to use depending on number of dimensions available. Raises: Unsupported number of dimensions (outside 2..5) raises an exception. """ # NOTE: use match expressions when PEP-634 (Py 3.10) is (widely) # available. if var.ndim == 2: return var[indy, indx] elif var.ndim == 3: return var[indxTime, indy, indx] elif var.ndim == 4: return var[indxTime, indz, indy, indx] elif var.ndim == 5: # Ensemble data return var[indxTime, indz, indrealization, indy, indx] else: raise Exception('Wrong dimension of variable: %s: %d' % (var, var.ndim))