Source code for opendrift

"""
Opendrift module

.. currentmodule:: opendrift

.. doctest::

    >>> import opendrift

"""
import logging; logger = logging.getLogger(__name__)
import importlib
import numpy as np
from .version import __version__

# For automated access to available drift classes, e.g. for GUI
# Hardcoded for now
_available_models = \
    ['leeway.Leeway',
     'openoil.OpenOil',
     'larvalfish.LarvalFish',
     'plastdrift.PlastDrift',
     'shipdrift.ShipDrift',
     'openberg_old.OpenBergOld']

[docs] def get_model_names(): return [m.split('.')[-1] for m in _available_models]
[docs] def get_model(model_name): if model_name not in get_model_names(): raise ValueError('No drift model named %s' % model_name) else: for m in _available_models: if m.split('.')[-1] == model_name: module = importlib.import_module( 'opendrift.models.' + m.split('.')[0]) model = getattr(module, model_name) return model
[docs] def open(filename, times=None, elements=None, load_history=True): '''Import netCDF output file as OpenDrift object of correct class''' import os import pydoc from netCDF4 import Dataset if not os.path.exists(filename): logger.info('File does not exist, trying to retrieve from URL') import urllib try: urllib.urlretrieve(filename, 'opendrift_tmp.nc') filename = 'opendrift_tmp.nc' except: raise ValueError('%s does not exist' % filename) n = Dataset(filename) try: module_name = n.opendrift_module class_name = n.opendrift_class except: logger.warning(filename + ' does not contain global attributes ' 'opendrift_module and opendrift_class, defaulting to OceanDrift') module_name = 'oceandrift' class_name = 'OceanDrift' n.close() if class_name == 'OpenOil3D': class_name = 'OpenOil' module_name = 'opendrift.models.openoil' if class_name == 'OceanDrift3D': class_name = 'OceanDrift' module_name = 'opendrift.models.oceandrift' cls = pydoc.locate(module_name + '.' + class_name) if cls is None: from opendrift.models import oceandrift cls = oceandrift.OceanDrift o = cls() o.io_import_file(filename, times=times, elements=elements, load_history=load_history) logger.info('Returning ' + str(type(o)) + ' object') return o
[docs] def open_xarray(filename, chunks={'trajectory': 50000, 'time': 1000}, elements=None): '''Import netCDF output file as OpenDrift object of correct class''' import os import pydoc import xarray as xr if not os.path.exists(filename): logger.info('File does not exist, trying to retrieve from URL') import urllib try: urllib.urlretrieve(filename, 'opendrift_tmp.nc') filename = 'opendrift_tmp.nc' except: raise ValueError('%s does not exist' % filename) n = xr.open_dataset(filename) try: module_name = n.opendrift_module class_name = n.opendrift_class except: raise ValueError(filename + ' does not contain ' 'necessary global attributes ' 'opendrift_module and opendrift_class') n.close() if class_name == 'OpenOil3D': class_name = 'OpenOil' module_name = 'opendrift.models.openoil' if class_name == 'OceanDrift3D': class_name = 'OceanDrift' module_name = 'opendrift.models.oceandrift' cls = pydoc.locate(module_name + '.' + class_name) if cls is None: from opendrift.models import oceandrift cls = oceandrift.OceanDrift o = cls() o.io_import_file_xarray(filename, chunks=chunks, elements=elements) logger.info('Returning ' + str(type(o)) + ' object') return o
[docs] def versions(): import multiprocessing import platform import scipy import matplotlib import netCDF4 import xarray import adios_db adios_version = adios_db.__version__ import copernicusmarine copernicus_version = copernicusmarine.__version__ import sys s = '\n------------------------------------------------------\n' s += 'Software and hardware:\n' s += ' OpenDrift version %s\n' % __version__ s += ' Platform: %s, %s\n' % (platform.system(), platform.release()) try: from psutil import virtual_memory ram = virtual_memory().total/(1024**3) except: ram = 'unknown' s += ' %s GB memory\n' % ram s += ' %s processors (%s)\n' % (multiprocessing.cpu_count(), platform.processor()) s += ' NumPy version %s\n' % np.__version__ s += ' SciPy version %s\n' % scipy.__version__ s += ' Matplotlib version %s\n' % matplotlib.__version__ s += ' NetCDF4 version %s\n' % netCDF4.__version__ s += ' Xarray version %s\n' % xarray.__version__ s += ' ADIOS (adios_db) version %s\n' % adios_version s += ' Copernicusmarine version %s\n' % copernicus_version s += ' Python version %s\n' % sys.version.replace('\n', '') s += '------------------------------------------------------\n' return s
[docs] def import_from_ladim(ladimfile, romsfile): """Import Ladim output file as OpenDrift simulation obejct""" from models.oceandrift import OceanDrift o = OceanDrift() from netCDF4 import Dataset, date2num, num2date if isinstance(romsfile, str): from opendrift.readers import reader_ROMS_native romsfile = reader_ROMS_native.Reader(romsfile) l = Dataset(ladimfile, 'r') pid = l.variables['pid'][:] particle_count = l.variables['particle_count'][:] end_index = np.cumsum(particle_count) start_index = np.concatenate(([0], end_index[:-1])) x = l.variables['X'][:] y = l.variables['Y'][:] lon, lat = romsfile.xy2lonlat(x, y) time = num2date(l.variables['time'][:], l.variables['time'].units) history_dtype_fields = [ (name, o.ElementType.variables[name]['dtype']) for name in o.ElementType.variables] # Add environment variables o.history_metadata = o.ElementType.variables.copy() history_dtype = np.dtype(history_dtype_fields) num_timesteps = len(time) num_elements = len(l.dimensions['particle']) o.history = np.ma.array( np.zeros([num_elements, num_timesteps]), dtype=history_dtype, mask=[True]) for n in range(num_timesteps): start = start_index[n] active = pid[start:start+particle_count[n]] o.history['lon'][active, n] = \ lon[start:start+particle_count[n]] o.history['lat'][active, n] = \ lat[start:start+particle_count[n]] o.history['status'][active, n] = 0 o.status_categories = ['active', 'missing_data'] firstlast = np.ma.notmasked_edges(o.history['status'], axis=1) index_of_last = firstlast[1][1] o.history['status'][np.arange(len(index_of_last)), index_of_last] = 1 kwargs = {} for var in ['lon', 'lat', 'status']: kwargs[var] = o.history[var][ np.arange(len(index_of_last)), index_of_last] kwargs['ID'] = range(num_elements) o.elements = o.ElementType(**kwargs) o.elements_deactivated = o.ElementType() o.remove_deactivated_elements() # Import time steps from metadata o.time_step = time[1] - time[0] o.time_step_output = o.time_step o.start_time = time[0] o.time = time[-1] o.steps_output = num_timesteps return o