# This file is part of OpenDrift.
#
# OpenDrift is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 2
#
# OpenDrift is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with OpenDrift. If not, see <https://www.gnu.org/licenses/>.
#
# Copyright 2015, Knut-Frode Dagestad, MET Norway
# Copyright 2020, Gaute Hope, MET Norway
import logging
logging.captureWarnings(True)
logger = logging.getLogger(__name__)
import sys
import os
import types
from typing import Union, List
import traceback
import inspect
import psutil
from opendrift.models.basemodel.environment import Environment
from opendrift.readers import reader_global_landmask
from datetime import datetime, timedelta
from abc import ABCMeta, abstractmethod, abstractproperty
import geojson
import xarray as xr
import numpy as np
import scipy
import pyproj
import matplotlib
matplotlib.pyplot.set_loglevel(level = 'warning')
matplotlib.rcParams['legend.numpoints'] = 1
matplotlib.rcParams['legend.scatterpoints'] = 1
matplotlib.rcParams['figure.autolayout'] = True
import matplotlib.pyplot as plt
from matplotlib import animation
from matplotlib.patches import Polygon
from matplotlib.path import Path
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from enum import Enum
import functools
import opendrift
from opendrift.timer import Timeable
from opendrift.errors import WrongMode
from opendrift.models.physics_methods import PhysicsMethods
from opendrift.config import Configurable, CONFIG_LEVEL_BASIC, CONFIG_LEVEL_ADVANCED, CONFIG_LEVEL_ESSENTIAL
import roaring_landmask
from roaring_landmask import RoaringLandmask
Mode = Enum('Mode', ['Config', 'Ready', 'Run', 'Result'])
rl = roaring_landmask.RoaringLandmask.new()
[docs]
def require_mode(mode: Union[Mode, List[Mode]], post_next_mode=False, error=None):
if not isinstance(mode, list):
mode = [mode]
def _decorator(func):
@functools.wraps(func)
def inner(self, *args, **kwargs):
def next_mode():
# Change the mode
prev = self.mode
if self.mode is Mode.Config:
self.env.finalize()
self.mode = Mode.Ready
elif self.mode is Mode.Ready:
self.mode = Mode.Run
elif self.mode is Mode.Run:
self.mode = Mode.Result
elif self.mode is Mode.Result:
pass
else:
raise Exception("Unknown mode")
logger.debug(f"Changed mode from {prev} to {self.mode}")
if self.mode not in mode:
# Check if we can advance to the required mode
if mode[0] is Mode.Ready and self.mode is Mode.Config:
next_mode()
elif mode[0] is Mode.Run and self.mode is Mode.Ready:
next_mode()
elif mode[0] is Mode.Result and self.mode is Mode.Run:
next_mode()
else:
raise WrongMode(mode, self.mode, error)
r = func(self, *args, **kwargs)
if post_next_mode:
next_mode()
return r
return inner
return _decorator
[docs]
class OpenDriftSimulation(PhysicsMethods, Timeable, Configurable):
"""Generic trajectory model class, to be extended (subclassed).
This as an Abstract Base Class, meaning that only subclasses can
be initiated and used.
Any specific subclass ('model') must contain its own (or shared)
specific type of particles (ElementType), whose properties are
updated at each time_step using method update() on basis of model
physics/chemistry/biology and 'required_variables' (environment)
which are provided by one or more Reader objects.
Attributes:
ElementType: the type (class) of particles to be used by this model
elements: object of the class ElementType, storing the specific
particle properties (ndarrays and scalars) of all active particles
as named attributes. Elements are added by seeding-functions
(presently only one implemented: seed_elements).
elements_deactivated: ElementType object containing particles which
have been deactivated (and removed from 'elements')
elements_scheduled: ElementType object containing particles which
have been scheduled, but not yet activated
required_variables: list of strings of CF standard_names which is
needed by this model (update function) to update properties of
particles ('elements') at each time_step. This core class has
no required_elements, this is implemented by subclasses/modules.
environment: recarray storing environment variables (wind, waves,
current etc) as named attributes. Attribute names follow
standard_name from CF-convention, allowing any OpenDriftSimulation
module/subclass using environment data from any readers which
can provide the requested variables. Used in method 'update'
to update properties of elements every time_step.
time_step: timedelta object, time interval at which element properties
are updated (including advection).
time_step_output: timedelta object, time interval at which element
properties are stored in memory and eventually written to file
readers: Dictionary where values are Reader objects, and names are
unique reference keywords used to access a given reader (typically
filename or URL)
priority_list: OrderedDict where names are variable names,
and values are lists of names (kewywords) of the reader, in the
order of priority (user defined) of which the readers shall be
called to retrieve environmental data.
"""
__metaclass__ = ABCMeta
mode = Mode.Config
status_categories = ['active'] # Particles are active by default
# Default plotting colors of trajectory endpoints
status_colors_default = {
'initial': 'green',
'active': 'blue',
'missing_data': 'gray'
}
plot_comparison_colors = [
'k', 'r', 'g', 'b', 'm', 'c', 'y', 'crimson', 'indigo', 'lightcoral',
'grey', 'sandybrown', 'palegreen', 'gold', 'yellowgreen', 'lime',
'steelblue', 'navy', 'darkviolet'
]
plot_comparison_colors = plot_comparison_colors + plot_comparison_colors
proj_latlon = pyproj.Proj('+proj=latlong')
"""
The environment holds all the readers and the forcing data for the simulation.
"""
env: Environment
[docs]
@classmethod
def SRS(cls):
return cls.proj_latlon
def __init__(self,
seed=0,
iomodule='netcdf',
loglevel=logging.DEBUG,
logfile=None):
"""Initialise OpenDriftSimulation
Args:
seed: integer or None. A given integer will yield identical
random numbers drawn each simulation. Random numbers are
e.g. used to distribute particles spatially when seeding,
and may be used by modules (subclasses) for e.g. diffusion.
Specifying a fixed value (default: 0) is useful for sensitivity
tests. With seed = None, different random numbers will be drawn
for subsequent runs, even with identical configuration/input.
iomodule: name of module used to export data
default: netcdf, see :py:mod:`opendrift.io` for more alternatives.
`iomodule` is module/filename without preceeding `io_`
loglevel: set to 0 (default) to retrieve all debug information.
Provide a higher value (e.g. 20) to receive less output.
logtime: if True, a time stamp is given for each logging line.
logtime can also be given as a python time specifier
(e.g. '%H:%M:%S')
logfile:
None (default) to send output to console.
A string to send output to logfile.
Or to get output to both terminal and file:
[<filename.log>, logging.StreamHandler(sys.stdout)]
"""
super().__init__()
self.profiles_depth = None
self.show_continuous_performance = False
self.origin_marker = None # Dictionary to store named seeding locations
self.minvals = {
} # Dicionaries to store minimum and maximum values of variables
self.maxvals = {}
# List to store GeoJSON dicts of seeding commands
self.seed_geojson = []
self.env = Environment(self.required_variables, self._config)
# Make copies of dictionaries so that they are private to each instance
self.status_categories = ['active'] # Particles are active by default
self.status_colors_default = self.status_colors_default.copy()
if hasattr(self, 'status_colors'):
# Append model specific colors to (and override) default colors
self.status_colors_default.update(self.status_colors)
self.status_colors = self.status_colors_default
else:
self.status_colors = self.status_colors_default
# Using a fixed seed will generate the same random numbers
# each run, useful for sensitivity tests
# Use seed = None to get different random numbers each time
np.random.seed(seed)
self.steps_calculation = 0 # Increase for each simulation step
self.steps_output = 0
self.elements_deactivated = self.ElementType() # Empty array
self.elements = self.ElementType() # Empty array
# Set up logging
logformat = '%(asctime)s %(levelname)-7s %(name)s:%(lineno)d: %(message)s'
datefmt = '%H:%M:%S'
if loglevel < 10: # 0 is NOTSET, giving no output
loglevel = 10
loggerConf = logging.getLogger('opendrift')
loggerConf.setLevel(loglevel)
if logfile is not None:
if not isinstance(logfile, list):
logfile = [logfile]
for lh in logfile:
if not isinstance(lh, logging.Logger) and not isinstance(lh, logging.StreamHandler):
lh = logging.FileHandler(lh)
lh.setLevel(loglevel)
lh.setFormatter(logging.Formatter(logformat, datefmt))
loggerConf.addHandler(lh)
else: # logging only to console, with colors
import coloredlogs
fields = coloredlogs.DEFAULT_FIELD_STYLES
fields['levelname']['color'] = 'magenta'
# coloredlogs does not create duplicate handlers
coloredlogs.install(level=loglevel,
fmt=logformat,
datefmt=datefmt,
field_styles=fields)
# Prepare outfile
try:
io_module = __import__(
'opendrift.export.io_' + iomodule,
fromlist=['init', 'write_buffer', 'close', 'import_file'])
except ImportError:
logger.info('Could not import iomodule ' + iomodule)
self.io_init = types.MethodType(io_module.init, self)
self.io_write_buffer = types.MethodType(io_module.write_buffer, self)
self.io_close = types.MethodType(io_module.close, self)
self.io_import_file = types.MethodType(io_module.import_file, self)
self.io_import_file_xarray = types.MethodType(
io_module.import_file_xarray, self)
# Set configuration options
self._add_config({
# type, default, min, max, enum, important, value, units, description
'general:simulation_name': {'type': 'str', 'min_length': 0, 'max_length': 64,
'default': '', 'level': CONFIG_LEVEL_BASIC,
'description': 'Name of simulation'},
'general:coastline_action': {
'type': 'enum',
'enum': ['none', 'stranding', 'previous'],
'default': 'stranding',
'level': CONFIG_LEVEL_BASIC,
'description': 'None means that objects may also move over land. '
'stranding means that objects are deactivated if they hit land. '
'previous means that objects will move back to the previous location '
'if they hit land'
},
'general:coastline_approximation_precision': {
'type': 'float',
'default': 0.001,
'min': 0.0001,
'max': 0.005,
'units': 'degrees',
'description': 'The precision of the particle position approximation to the coastline.',
'level': CONFIG_LEVEL_BASIC
},
'general:time_step_minutes': {
'type': 'float',
'min': .01,
'max': 1440,
'default': 60,
'units': 'minutes',
'level': CONFIG_LEVEL_BASIC,
'description': 'Calculation time step used for the simulation. The output time step may '
'be equal or larger than this.'
},
'general:time_step_output_minutes': {
'type': 'float',
'min': 1,
'max': 1440,
'default': None,
'units': 'minutes',
'level': CONFIG_LEVEL_BASIC,
'description': 'Output time step, i.e. the interval at which output is saved. '
'This must be larger than the calculation time step, and be an integer multiple of this.'
},
'seed:ocean_only': {
'type': 'bool',
'default': True,
'description': 'If True, elements seeded on land will be moved to the closest '
'position in ocean',
'level': CONFIG_LEVEL_ADVANCED
},
'seed:number': {
'type': 'int',
'default': 1,
'min': 1,
'max': 100000000,
'units': 1,
'description': 'The number of elements for the simulation.',
'level': CONFIG_LEVEL_BASIC
},
'drift:max_age_seconds': {
'type': 'float',
'default': None,
'min': 0,
'max': np.inf,
'units': 'seconds',
'description':
'Elements will be deactivated when this age is reached',
'level': CONFIG_LEVEL_ADVANCED
},
'drift:advection_scheme': {
'type': 'enum',
'enum': ['euler', 'runge-kutta', 'runge-kutta4'],
'default': 'euler',
'level': CONFIG_LEVEL_ADVANCED,
'description': 'Numerical advection scheme for ocean current advection'
},
'drift:horizontal_diffusivity': {
'type': 'float',
'default': 0,
'min': 0,
'max': 100000,
'units': 'm2/s',
'description': 'Add horizontal diffusivity (random walk)',
'level': CONFIG_LEVEL_BASIC
},
'drift:profiles_depth': {'type': 'float', 'default': 50, 'min': 0, 'max': None,
'level': CONFIG_LEVEL_ADVANCED, 'units': 'meters', 'description':
'Environment profiles will be retrieved from surface and down to this depth'},
'drift:wind_uncertainty': {
'type': 'float',
'default': 0,
'min': 0,
'max': 5,
'units': 'm/s',
'description':
'Add gaussian perturbation with this standard deviation to wind components at each time step.',
'level': CONFIG_LEVEL_ADVANCED
},
'drift:relative_wind': {
'type': 'bool',
'default': False,
'description':
'If True, wind drift is calculated for absolute wind (wind vector minus ocean surface current vector).',
'level': CONFIG_LEVEL_ADVANCED
},
'drift:deactivate_north_of': {
'type': 'float',
'default': None,
'min': -90,
'max': 90,
'units': 'degrees',
'description':
'Elements are deactivated if the move further north than this limit',
'level': CONFIG_LEVEL_ADVANCED
},
'drift:deactivate_south_of': {
'type': 'float',
'default': None,
'min': -90,
'max': 90,
'units': 'degrees',
'description':
'Elements are deactivated if the move further south than this limit',
'level': CONFIG_LEVEL_ADVANCED
},
'drift:deactivate_east_of': {
'type': 'float',
'default': None,
'min': -360,
'max': 360,
'units': 'degrees',
'description':
'Elements are deactivated if the move further east than this limit',
'level': CONFIG_LEVEL_ADVANCED
},
'drift:deactivate_west_of': {
'type': 'float',
'default': None,
'min': -360,
'max': 360,
'units': 'degrees',
'description':
'Elements are deactivated if the move further west than this limit',
'level': CONFIG_LEVEL_ADVANCED
},
'readers:max_number_of_fails': {
'type': 'int',
'default': 1,
'min': 0,
'max': 1e6,
'units': 'number',
'description':
'Readers are discarded if they fail (e.g. corrupted data, og hanging servers) move than this number of times',
'level': CONFIG_LEVEL_ADVANCED
},
})
# Add default element properties to config
c = {}
for p in self.ElementType.variables:
v = self.ElementType.variables[p]
if 'seed' in v and v['seed'] is False:
continue # Properties which may not be provided by user
minval = v['min'] if 'min' in v else None
maxval = v['max'] if 'max' in v else None
units = v['units'] if 'units' in v else None
c['seed:%s' % p] = {
'type': v['type'] if 'type' in v else 'float',
'min': v['min'] if 'min' in v else None,
'max': v['max'] if 'max' in v else None,
'units': v['units'] if 'units' in v else None,
'default': v['default'] if 'default' in v else None,
'description': v['description'] if 'description' in v \
else 'Seeding value of %s' % p, 'level': v['level'] if 'level' in v \
else CONFIG_LEVEL_ADVANCED
}
self._add_config(c)
self.history = None # Recarray to store trajectories and properties
# Find variables which require profiles
self.required_profiles = [
var for var in self.required_variables
if 'profiles' in self.required_variables[var]
and self.required_variables[var]['profiles'] is True
]
# Find variables which are desired, but not required
self.desired_variables = [
var for var in self.required_variables
if 'important' in self.required_variables[var]
and self.required_variables[var]['important'] is False
]
self.timer_start('total time')
self.timer_start('configuration')
self.add_metadata('opendrift_version', opendrift.__version__)
logger.info('OpenDriftSimulation initialised (version %s)' %
opendrift.version.version_or_git())
# Check if dependencies are outdated
import importlib
if importlib.util.find_spec("cmocean") is None:
logger.warning('#' * 82)
logger.warning(
'Dependencies are outdated, please update with: conda env update -f environment.yml'
)
logger.warning('#' * 82)
[docs]
def clone(self):
c = self.__class__()
c._config.clear()
for k, v in self._config.items():
c._config[k] = v
c.add_reader([r for _, r in self.env.readers.items()])
return c
@require_mode(mode=Mode.Config,
error='Cannot set config after elements have been seeded')
@functools.wraps(Configurable.set_config)
def set_config(self, *args, **kwargs):
return Configurable.set_config(self, *args, **kwargs)
@require_mode(mode=[Mode.Config, Mode.Ready])
@functools.wraps(Configurable.set_config)
def __set_seed_config__(self, key: str, value):
"""
This method allows setting config values that are passed as seed arguments. The environment is already prepared before this, so make sure that nothing is changed that requires the environment to be re-initialized.
"""
if not key.startswith('seed'):
raise ValueError("This method is only allowed for setting seed arguments.")
# check that the oil_type is only set once
if key == 'seed:oil_type' and self.num_elements_scheduled() > 0:
if value != self.get_config('seed:oil_type'):
raise WrongMode(Mode.Config, self.mode, msg=f"Cannot change the oil type after elements have been seeded: {self.get_config('seed:oil_type')} -> {value}")
return Configurable.set_config(self, key, value)
[docs]
@require_mode(mode=[Mode.Config, Mode.Result])
def add_reader(self, readers, variables=None, first=False):
self.env.add_reader(readers, variables, first)
[docs]
@require_mode(mode=Mode.Config)
def add_readers_from_list(self, *args, **kwargs):
'''Make readers from a list of URLs or paths to netCDF datasets'''
self.env.add_readers_from_list(*args, **kwargs)
[docs]
@require_mode(mode=Mode.Config)
def add_readers_from_file(self, *args, **kwargs):
'''Make readers from a file containing list of URLs or paths to netCDF datasets'''
self.env.add_readers_from_file(*args, **kwargs)
# To be overloaded by sublasses, but this parent method must be called
[docs]
def prepare_run(self):
# Copy profile_depth from config
self.profiles_depth = self.get_config('drift:profiles_depth')
[docs]
def store_present_positions(self, IDs=None, lons=None, lats=None):
"""Store present element positions, in case they shall be moved back"""
if self.get_config('general:coastline_action') in ['previous', 'stranding'] or (
'general:seafloor_action' in self._config
and self.get_config('general:seafloor_action') == 'previous'):
if not hasattr(self, 'previous_lon'):
self.previous_lon = np.ma.masked_all(self.num_elements_total())
self.previous_lat = np.ma.masked_all(self.num_elements_total())
if IDs is None:
IDs = self.elements.ID
lons = self.elements.lon
lats = self.elements.lat
self.newly_seeded_IDs = None
else:
# to check if seeded on land
if len(IDs) > 0:
self.newly_seeded_IDs = np.copy(IDs)
else:
self.newly_seeded_IDs = None
self.previous_lon[IDs - 1] = np.copy(lons)
self.previous_lat[IDs - 1] = np.copy(lats)
[docs]
def store_previous_variables(self):
"""Store some environment variables, for access at next time step"""
if not hasattr(self, 'store_previous'):
return
if not hasattr(self, 'variables_previous'):
# Create ndarray to store previous variables
dtype = [(var, np.float32) for var in self.store_previous]
self.variables_previous = np.array(np.full(
self.num_elements_total(), np.nan),
dtype=dtype)
# Copying variables_previous to environment_previous
self.environment_previous = self.variables_previous[self.elements.ID -
1]
# Use new values for new elements which have no previous value
for var in self.store_previous:
undefined = np.isnan(self.environment_previous[var])
self.environment_previous[var][undefined] = getattr(
self.environment, var)[undefined]
self.environment_previous = self.environment_previous.view(np.recarray)
for var in self.store_previous:
self.variables_previous[var][self.elements.ID - 1] = getattr(
self.environment, var)
[docs]
def interact_with_coastline(self, final=False):
"""Coastline interaction according to configuration setting"""
if self.num_elements_active() == 0:
return
i = self.get_config('general:coastline_action')
coastline_approximation_precision = self.get_config('general:coastline_approximation_precision')
if not hasattr(self, 'environment') or not hasattr(
self.environment, 'land_binary_mask'):
return
if i == 'none': # Do nothing
return
if final is True: # Get land_binary_mask for final location
en, en_prof, missing = \
self.env.get_environment(['land_binary_mask'],
self.time,
self.elements.lon,
self.elements.lat,
self.elements.z)
self.environment.land_binary_mask = en.land_binary_mask
if i == 'stranding': # Deactivate elements on land, but not in air
on_land = np.where(self.environment.land_binary_mask == 1)[0]
if len(on_land) == 0:
logger.debug('No elements hit coastline.')
return
logger.debug('%s elements hit land, moving them to the coastline.' % len(on_land))
self.deactivate_elements(
(self.environment.land_binary_mask == 1) & (self.elements.z <= 0),
reason='stranded'
)
if not coastline_approximation_precision:
return
for on_land_id, on_land_prev_id in zip(on_land, self.elements.ID[on_land]):
lon = self.elements.lon[on_land_id]
lat = self.elements.lat[on_land_id]
prev_lon = self.previous_lon[on_land_prev_id - 1]
prev_lat = self.previous_lat[on_land_prev_id - 1]
step_degrees = float(coastline_approximation_precision)
x_degree_diff = np.abs(prev_lon - lon)
x_samples = np.floor(x_degree_diff / step_degrees).astype(np.int64) if x_degree_diff > step_degrees else 1
x = np.linspace(prev_lon, lon, x_samples)
y_degree_diff = np.abs(prev_lat - lat)
y_samples = np.floor(y_degree_diff/ step_degrees).astype(np.int64) if y_degree_diff > step_degrees else 1
y = np.linspace(prev_lat, lat, y_samples)
xx, yy = np.meshgrid(x,y)
xx, yy = xx.ravel(), yy.ravel()
rl_mask = rl.contains_many(xx.ravel(), yy.ravel())
if np.any(rl_mask):
index = np.argmax(rl_mask)
new_lon = xx[index]
new_lat = yy[index]
self.elements.lon[on_land_id] = new_lon
self.elements.lat[on_land_id] = new_lat
self.environment.land_binary_mask[on_land] = 0
elif i == 'previous': # Go back to previous position (in water)
if self.newly_seeded_IDs is not None:
self.deactivate_elements(
(self.environment.land_binary_mask == 1) &
(self.elements.age_seconds == 0),
reason='seeded_on_land')
on_land = np.where(self.environment.land_binary_mask == 1)[0]
if len(on_land) == 0:
logger.debug('No elements hit coastline.')
else:
logger.debug('%s elements hit coastline, '
'moving back to water' % len(on_land))
on_land_ID = self.elements.ID[on_land]
self.elements.lon[on_land] = \
np.copy(self.previous_lon[on_land_ID - 1])
self.elements.lat[on_land] = \
np.copy(self.previous_lat[on_land_ID - 1])
self.environment.land_binary_mask[on_land] = 0
[docs]
def interact_with_seafloor(self):
"""Seafloor interaction according to configuration setting"""
if self.num_elements_active() == 0:
return
if 'sea_floor_depth_below_sea_level' not in self.env.priority_list:
return
if not hasattr(self, 'environment'):
logger.warning('Seafloor check not being run because environment is missing. '
'This will happen the first time the function is run but if it happens '
'subsequently there is probably a problem.')
return
if not hasattr(self.environment, 'sea_surface_height'):
logger.warning('Seafloor check not being run because sea_surface_height is missing. ')
return
# the shape of these is different than the original arrays
# because it is for active drifters
sea_floor_depth = self.sea_floor_depth()
sea_surface_height = self.sea_surface_height()
# Check if any elements are below sea floor
# But remember that the water column is the sea floor depth + sea surface height
ibelow = self.elements.z < -(sea_floor_depth + sea_surface_height)
below = np.where(ibelow)[0]
if len(below) == 0:
logger.debug('No elements hit seafloor.')
return
i = self.get_config('general:seafloor_action')
if i == 'lift_to_seafloor':
logger.debug('Lifting %s elements to seafloor.' % len(below))
self.elements.z[below] = -sea_floor_depth[below]
elif i == 'deactivate':
self.deactivate_elements(ibelow, reason='seafloor')
self.elements.z[below] = -sea_floor_depth[below]
elif i == 'previous': # Go back to previous position (in water)
logger.warning('%s elements hit seafloor, '
'moving back ' % len(below))
below_ID = self.elements.ID[below]
self.elements.lon[below] = \
np.copy(self.previous_lon[below_ID - 1])
self.elements.lat[below] = \
np.copy(self.previous_lat[below_ID - 1])
[docs]
@abstractmethod
def update(self):
"""Any trajectory model implementation must define an update method.
This method must/can use environment data (self.environment) to
update properties (including position) of its particles (self.elements)
"""
@abstractproperty
def ElementType(self):
"""Any trajectory model implementation must define an ElementType."""
@abstractproperty
def required_variables(self):
"""Any trajectory model implementation must list needed variables."""
[docs]
def test_data_folder(self):
import opendrift
return os.path.abspath(
os.path.join(os.path.dirname(opendrift.__file__), '..', 'tests',
'test_data')) + os.path.sep
[docs]
def num_elements_active(self):
"""The number of active elements."""
if hasattr(self, 'elements'):
return len(self.elements)
else:
return 0
[docs]
def num_elements_deactivated(self):
"""The number of deactivated elements."""
if hasattr(self, 'elements_deactivated'):
return len(self.elements_deactivated)
else:
return 0
[docs]
def num_elements_scheduled(self):
if hasattr(self, 'elements_scheduled'):
return len(self.elements_scheduled)
else:
return 0
[docs]
def num_elements_total(self):
"""The total number of scheduled, active and deactivated elements."""
return self.num_elements_activated() + self.num_elements_scheduled()
[docs]
def num_elements_activated(self):
"""The total number of active and deactivated elements."""
return self.num_elements_active() + self.num_elements_deactivated()
[docs]
@require_mode(mode=Mode.Ready)
def schedule_elements(self, elements, time):
"""Schedule elements to be seeded during runtime.
Also assigns a unique ID to each particle, monotonically increasing."""
# prepare time
if isinstance(time, np.ndarray):
time = list(time)
if not isinstance(time, list):
time = [time]
if len(time) == 1 and len(elements) > 1:
time = time * len(elements)
if not hasattr(self, 'elements_scheduled'):
self.elements_scheduled = elements
self.elements_scheduled_time = np.array(time)
# We start simulation at time of release of first element:
self.start_time = time[0]
self.elements_scheduled.ID = np.arange(1, len(elements) + 1)
else:
elements.ID = np.arange(self.num_elements_scheduled() + 1,
self.num_elements_scheduled() + 1 +
len(elements)) # Increase ID successively
self.elements_scheduled.extend(elements)
self.elements_scheduled_time = np.append(
self.elements_scheduled_time, np.array(time))
min_time = np.min(time)
if hasattr(self, 'start_time'):
if min_time < self.start_time:
self.start_time = min_time
logger.debug('Setting simulation start time to %s' %
str(min_time))
else:
self.start_time = min_time
logger.debug('Setting simulation start time to %s' % str(min_time))
[docs]
def release_elements(self):
"""Activate elements which are scheduled within following timestep."""
logger.debug(
'to be seeded: %s, already seeded %s' %
(len(self.elements_scheduled), self.num_elements_activated()))
if len(self.elements_scheduled) == 0:
return
if self.time_step.days >= 0:
indices = (self.elements_scheduled_time >= self.time) & \
(self.elements_scheduled_time <
self.time + self.time_step)
else:
indices = (self.elements_scheduled_time <= self.time) & \
(self.elements_scheduled_time >
self.time + self.time_step)
self.store_present_positions(self.elements_scheduled.ID[indices],
self.elements_scheduled.lon[indices],
self.elements_scheduled.lat[indices])
self.elements_scheduled.move_elements(self.elements, indices)
self.elements_scheduled_time = self.elements_scheduled_time[~indices]
logger.debug('Released %i new elements.' % np.sum(indices))
[docs]
def closest_ocean_points(self, lon, lat):
"""Return the closest ocean points for given lon, lat"""
deltalon = 0.01 # grid
deltalat = 0.01
numbuffer = 10
lonmin = lon.min() - deltalon * numbuffer
lonmax = lon.max() + deltalon * numbuffer
latmin = lat.min() - deltalat * numbuffer
latmax = lat.max() + deltalat * numbuffer
if not 'land_binary_mask' in self.env.priority_list:
logger.info('No land reader added, '
'making a temporary landmask reader')
from opendrift.models.oceandrift import OceanDrift
reader_landmask = reader_global_landmask.Reader()
seed_state = np.random.get_state(
) # Do not alter current random number generator
o = OceanDrift()
np.random.set_state(seed_state)
if hasattr(self, 'simulation_extent'):
o.simulation_extent = self.simulation_extent
o.env.add_reader(reader_landmask)
o.env.finalize() # This is not env of the main simulation
land_reader = reader_landmask
else:
logger.info('Using existing reader for land_binary_mask')
land_reader_name = self.env.priority_list['land_binary_mask'][0]
land_reader = self.env.readers[land_reader_name]
o = self
land = o.env.get_environment(['land_binary_mask'],
lon=lon,
lat=lat,
z=0 * lon,
time=land_reader.start_time)[0]['land_binary_mask']
if land.max() == 0:
logger.info('All points are in ocean')
return lon, lat
logger.info('Moving %i out of %i points from land to water' %
(np.sum(land != 0), len(lon)))
landlons = lon[land != 0]
landlats = lat[land != 0]
longrid = np.arange(lonmin, lonmax, deltalon)
latgrid = np.arange(latmin, latmax, deltalat)
longrid, latgrid = np.meshgrid(longrid, latgrid)
longrid = longrid.ravel()
latgrid = latgrid.ravel()
# Remove grid-points not covered by this reader
latgrid_covered = land_reader.covers_positions(longrid, latgrid)[0]
longrid = longrid[latgrid_covered]
latgrid = latgrid[latgrid_covered]
landgrid = o.env.get_environment(['land_binary_mask'],
lon=longrid,
lat=latgrid,
z=0 * longrid,
time=land_reader.start_time)[0]['land_binary_mask']
if landgrid.min() == 1 or np.isnan(landgrid.min()):
logger.warning('No ocean pixels nearby, cannot move elements.')
if land.min() == 1:
raise ValueError('All elements seeded on land')
return lon, lat
oceangridlons = longrid[landgrid == 0]
oceangridlats = latgrid[landgrid == 0]
tree = scipy.spatial.cKDTree(
np.dstack([oceangridlons, oceangridlats])[0])
landpoints = np.dstack([landlons, landlats])
_dist, indices = tree.query(landpoints)
indices = indices.ravel()
lon[land != 0] = oceangridlons[indices]
lat[land != 0] = oceangridlats[indices]
return lon, lat
[docs]
@require_mode(mode=Mode.Ready)
def seed_elements(self,
lon,
lat,
time,
radius=0,
number=None,
radius_type='gaussian',
**kwargs):
"""Seed elements with given position(s), time and properties.
Arguments:
lon: scalar or array
central longitude(s).
lat: scalar or array
central latitude(s).
radius: scalar or array
radius in meters around each lon-lat pair,
within which particles will be randomly seeded.
number: integer, total number of particles to be seeded
If number is None, the number of elements is the
length of lon/lat or time if these are arrays. Otherwise
the number of elements are obtained from the config-default.
time: datenum or list
The time at which particles are seeded/released.
If time is a list with two elements, elements are seeded
continously from start/first to end/last time.
If time is a list with more than two elements, the number of elements
is equal to len(time) and are seeded as a time series.
radius_type: string
If 'gaussian' (default), the radius is the standard deviation in
x-y-directions. If 'uniform', elements are spread evenly and
always inside a circle with the given radius.
kwargs:
keyword arguments containing properties/attributes and
values corresponding to the actual particle type (ElementType).
These are forwarded to the ElementType class. All properties
for which there are no default value must be specified.
"""
if 'cone' in kwargs:
raise ValueError(
'Keyword *cone* for seed_elements is deprecated, use seed_cone() instead.'
)
if self.origin_marker is None:
self.origin_marker = {}
if 'origin_marker' in kwargs:
origin_marker = kwargs['origin_marker']
else:
origin_marker = len(self.origin_marker)
if 'origin_marker_name' in kwargs:
origin_marker_name = kwargs['origin_marker_name']
del kwargs['origin_marker_name']
else:
origin_marker_name = 'Seed %d' % len(self.origin_marker)
if not 'origin_marker' in kwargs:
kwargs['origin_marker'] = origin_marker
if '_' in origin_marker_name:
raise ValueError(
'Underscore (_) not allowed in origin_marker_name')
self.origin_marker[str(origin_marker)] = origin_marker_name.replace(
' ', '_')
lon = np.atleast_1d(lon).ravel()
lat = np.atleast_1d(lat).ravel()
radius = np.atleast_1d(radius).ravel()
time = np.atleast_1d(time)
if lat.max() > 90 or lat.min() < -90:
raise ValueError('Latitude must be between -90 and 90 degrees')
if len(lon) != len(lat):
raise ValueError('Lon and lat must have same lengths')
if len(lon) > 1:
if number is not None and number != len(lon):
raise ValueError(
'Lon and lat have length %s, but number is %s' %
(len(lon), number))
number = len(lon)
else:
if number is None:
if len(time) > 2:
number = len(time) # Interpreting as time series
else:
number = self.get_config('seed:number')
lon = lon * np.ones(number)
lat = lat * np.ones(number)
if len(time) != number and len(time) > 1:
if len(time) == 2: # start -> end
td = (time[1] - time[0]) / (number - 1
) # timestep between points
time = [time[0] + i * td for i in range(number)]
else:
raise ValueError(
'Time array has length %s, must be 1, 2 or %s' %
(len(time), number))
# Add radius / perturbation
if radius.max() > 0:
geod = pyproj.Geod(ellps='WGS84')
if radius_type == 'gaussian':
x = np.random.randn(np.sum(number)) * radius
y = np.random.randn(np.sum(number)) * radius
az = np.degrees(np.arctan2(x, y))
dist = np.sqrt(x * x + y * y)
elif radius_type == 'uniform':
az = np.random.rand(np.sum(number)) * 360
dist = np.sqrt(np.random.uniform(0, 1,
np.sum(number))) * radius
lon, lat, az = geod.fwd(lon, lat, az, dist, radians=False)
# If z is 'seafloor'
if not 'z' in kwargs or kwargs['z'] is None:
if 'seed:seafloor' in self._config:
if self.get_config('seed:seafloor') is True:
kwargs['z'] = 'seafloor'
logger.debug('Seafloor is selected, neglecting z')
if 'z' in kwargs and isinstance(kwargs['z'], str) \
and kwargs['z'][0:8] == 'seafloor':
# We need to fetch seafloor depth from reader
seafloor_constant = self.get_config(
'environment:constant:sea_floor_depth_below_sea_level')
seafloor_fallback = self.get_config(
'environment:fallback:sea_floor_depth_below_sea_level')
if seafloor_constant is not None:
env = {
'sea_floor_depth_below_sea_level':
np.array(seafloor_constant)
}
elif ('sea_floor_depth_below_sea_level'
in self.env.priority_list) or len(self.env._lazy_readers()):
if not hasattr(self, 'time'):
self.time = time[0]
env, env_profiles, missing = \
self.env.get_environment(['sea_floor_depth_below_sea_level'],
time=time[0], lon=lon, lat=lat, z=0*lon)
elif seafloor_fallback is not None:
env = {
'sea_floor_depth_below_sea_level':
np.array(seafloor_fallback)
}
else:
raise ValueError('A reader providing the variable '
'sea_floor_depth_below_sea_level must be '
'added before seeding elements at seafloor.')
# Add M meters if given as 'seafloor+M'
if len(kwargs['z']) > 8 and kwargs['z'][8] == '+':
meters_above_seafloor = float(kwargs['z'][9::])
logger.info('Seeding elements %f meters above seafloor' %
meters_above_seafloor)
else:
meters_above_seafloor = 0
kwargs['z'] = \
-env['sea_floor_depth_below_sea_level'].astype('float32') + meters_above_seafloor
# Creating and scheduling elements
elements = self.ElementType(lon=lon, lat=lat, **kwargs)
time_array = np.array(time)
self.schedule_elements(elements, time)
[docs]
@require_mode(mode=Mode.Ready)
def seed_cone(self, lon, lat, time, radius=0, number=None, **kwargs):
"""Seed elements along a transect/cone between two points/times
Arguments:
lon: scalar or list with 2 elements [lon0, lon1]
lat: scalar or list with 2 elements [lat0, lat]
time: datetime or list with 2 elements [t0, t1]
radius: scalar or list with 2 elements [r0, r1] Unit: meters
number (int): The number of elements. If this is None, the number of
elements is taken from configuration.
Elements are seeded along a transect from
(lon0, lat0) with uncertainty radius r0 at time t0, towards
(lon1, lat1) with uncertainty radius r1 at time t1.
If r0 != r1, the unceetainty radius is linearly changed along
the transect, thus outlining a "cone".
"""
if number is None:
number = self.get_config('seed:number')
if number == 1:
raise ValueError(
'For a cone, the number of elements must be at least 2 or more, given is 1'
)
lon = np.atleast_1d(lon).ravel()
lat = np.atleast_1d(lat).ravel()
radius = np.atleast_1d(radius).ravel()
if len(lon) != len(lat):
raise ValueError('Lon and lat must have same length (1 or 2)')
elif len(lon) > 2:
raise ValueError(
'Lon and lat must have length 1 or 2, given length is %s' %
(len(lon)))
elif len(lon) == 1:
lon = lon * np.ones(number)
lat = lat * np.ones(number)
elif len(lon) == 2: # Segment from lon0,lat1 to lon1,lat2
geod = pyproj.Geod(ellps='WGS84')
lonin = lon
latin = lat
# Note that npts places points in-between start and end, and does not include these
conelonlats = geod.npts(lon[0],
lat[0],
lon[1],
lat[1],
number,
radians=False)
lon, lat = zip(*conelonlats)
if len(radius) > 2:
raise ValueError('Seed radius must have length 1 or 2')
elif len(radius) == 2: # Linear increase from r0 to r1
radius = np.linspace(radius[0], radius[1], number)
if isinstance(time, list) and len(time) == 1:
time = time[0]
if hasattr(time, '__len__'):
timespan = [time[0], time[-1]]
else:
timespan = [time, time]
radius = radius.astype(np.float32)
lonin = lonin if 'lonin' in locals() else [lon.min(), lon.max()]
latin = latin if 'latin' in locals() else [lat.min(), lat.max()]
self.seed_cone_arguments = {
'lon': lonin,
'lat': latin,
'radius': [float(radius[0]), float(radius[-1])],
'time': timespan,
'number': number
}
# Make GeoJson seeding dict to be saved in netCDF metadata
geo = geojson.LineString([(float(lonin[0]), float(latin[0])),
(float(lonin[1]), float(latin[1]))])
seed_defaults = self.get_configspec('seed')
default_seed = {
k.split(':')[-1]: seed_defaults[k]['value']
for k in seed_defaults
}
if 'seafloor' in default_seed and default_seed['seafloor'] is True:
default_seed['z'] = 'seafloor'
default_seed = {
**default_seed,
**kwargs
} # Overwrite with explicitly provided values
properties = {
**default_seed, 'time': [str(timespan[0]),
str(timespan[1])],
'radius': [float(radius[0]), float(radius[-1])],
'number': number
}
# convert array to string in case of array input to seed cone
for key in properties.keys():
if isinstance(properties[key], np.ndarray):
properties[key] = np.array2string(properties[key])
f = geojson.Feature(geometry=geo, properties=properties)
self.seed_geojson.append(f)
# Forwarding calculated cone points/radii to seed_elements
self.seed_elements(lon=lon,
lat=lat,
time=time,
radius=radius,
number=number,
**kwargs)
[docs]
@require_mode(mode=Mode.Ready)
def seed_from_geojson(self, gjson):
"""Under development"""
try:
gj = geojson.loads(gjson)
except:
raise ValueError('Could not load GeoJSON string: %s' % gjson)
if not gj.is_valid:
raise ValueError('GeoJSON string is not valid: %s' % gj.errors())
# Assuming temporally that g is a Feature, and not a FeatureCollection
properties = gj['properties']
if 'time' not in properties:
raise ValueError('Property "time" is not available')
kwargs = {}
for prop in properties:
if prop == 'time':
t = properties['time']
if isinstance(t, list):
time = [
datetime.fromisoformat(t[0].replace("Z", "+00:00")),
datetime.fromisoformat(t[1].replace("Z", "+00:00"))
]
else:
time = datetime.fromisoformat(t.replace("Z", "+00:00"))
else:
kwargs[prop] = properties[prop]
geometry = gj['geometry']
if geometry['type'] == 'Polygon':
coords = list(geojson.utils.coords(gj))
lon, lat = zip(*[(c[0], c[1]) for c in coords])
self.seed_within_polygon(lons=lon, lats=lat, time=time, **kwargs)
elif geometry['type'] == 'LineString':
coords = list(geojson.utils.coords(gj))
lon, lat = zip(*[(c[0], c[1]) for c in coords])
self.seed_cone(lon=lon, lat=lat, time=time, **kwargs)
elif geometry['type'] == 'Point':
coords = list(geojson.utils.coords(gj))
lon, lat = zip(*[(c[0], c[1]) for c in coords])
self.seed_elements(lon=lon, lat=lat, time=time, **kwargs)
else:
raise ValueError('Not yet implemented')
[docs]
@require_mode(mode=Mode.Ready)
def seed_repeated_segment(self,
lons,
lats,
start_time,
end_time,
time_interval=None,
number_per_segment=None,
total_number=None,
**kwargs):
"""Seed elements repeatedly in time along a segment.
The segment goes from lon[0],lat[0] to lon[1],lat[1].
The number of elements should be proved as either:
1) number_per_segment, in which case total number of elements is number_per_segment * len(times), or
2) total_number, in which case the number of elements per segment is: total_number / len(times).
Any extra elements are duplicated along at the first segment.
"""
numtimes = int((end_time - start_time).total_seconds() /
time_interval.total_seconds() + 1)
times = [start_time + i * time_interval for i in range(numtimes)]
geod = pyproj.Geod(ellps='WGS84')
if number_per_segment is None:
number_per_segment = int(np.floor(total_number / numtimes))
s_lonlats = geod.npts(lons[0],
lats[0],
lons[1],
lats[1],
number_per_segment,
radians=False)
slon, slat = list(zip(*s_lonlats))
slon = np.atleast_1d(slon)
slat = np.atleast_1d(slat)
lon, time = np.meshgrid(slon, times)
lat, time = np.meshgrid(slat, times)
lon = lon.ravel()
lat = lat.ravel()
time = time.ravel()
if total_number is not None:
additional_elements = total_number - len(lon.ravel())
print('Repeating the %d last points, to obtain %d elements' %
(additional_elements, total_number))
lon = np.concatenate((lon, lon[-additional_elements::]))
lat = np.concatenate((lat, lat[-additional_elements::]))
time = np.concatenate((time, time[-additional_elements::]))
self.seed_elements(lon=lon, lat=lat, time=time, **kwargs)
[docs]
@require_mode(mode=Mode.Ready)
def seed_within_polygon(self, lons, lats, number=None, **kwargs):
"""Seed a number of elements within given polygon.
Arguments:
lon: array of longitudes
lat: array of latitudes
number: int, number of elements to be seeded
kwargs: keyword arguments containing properties/attributes and
values corresponding to the actual particle type (ElementType).
These are forwarded to method seed_elements(). All properties
for which there are no default value must be specified.
"""
if number == 0:
return
if number is None:
number = self.get_config('seed:number')
lons = np.asarray(lons)
lats = np.asarray(lats)
if len(lons) < 3:
logger.info('At least three points needed to make a polygon')
return
if len(lons) != len(lats):
raise ValueError('lon and lat arrays must have same length.')
poly = Polygon(list(zip(lons, lats)), closed=True)
# Place N points within the polygons
proj = pyproj.Proj('+proj=aea +lat_1=%f +lat_2=%f +lat_0=%f '
'+lon_0=%f +R=6370997.0 +units=m +ellps=WGS84' %
(lats.min(), lats.max(),
(lats.min() + lats.max()) / 2,
(lons.min() + lons.max()) / 2))
lonlat = poly.get_xy()
lon = lonlat[:, 0]
lat = lonlat[:, 1]
x, y = proj(lon, lat)
area = 0.0
for i in range(-1, len(x) - 1):
area += x[i] * (y[i + 1] - y[i - 1])
area = abs(area) / 2
# Make points, evenly distributed
deltax = np.sqrt(area / number)
lonpoints = np.array([])
latpoints = np.array([])
lonlat = poly.get_xy()
lon = lonlat[:, 0]
lat = lonlat[:, 1]
x, y = proj(lon, lat)
xvec = np.linspace(x.min() + deltax / 2,
x.max() - deltax / 2,
int((x.max() - x.min()) / deltax))
yvec = np.linspace(y.min() + deltax / 2,
y.max() - deltax / 2,
int((y.max() - y.min()) / deltax))
x, y = np.meshgrid(xvec, yvec)
lon, lat = proj(x, y, inverse=True)
lon = lon.ravel()
lat = lat.ravel()
points = np.c_[lon, lat]
ind = Path(poly.xy).contains_points(points)
if not any(ind): # No elements are inside, we seed on border
lonpoints = np.append(lonpoints, lons[0:number])
latpoints = np.append(latpoints, lats[0:number])
else:
lonpoints = np.append(lonpoints, lon[ind])
latpoints = np.append(latpoints, lat[ind])
if len(ind) == 0:
logger.info('Small or irregular polygon, using center point.')
lonpoints = np.atleast_1d(np.mean(lons))
latpoints = np.atleast_1d(np.mean(lats))
# Truncate if too many
# NB: should also repeat some points, if too few
lonpoints = lonpoints[0:number]
latpoints = latpoints[0:number]
while True:
if len(lonpoints) < number:
# If number of positions is smaller than requested,
# we duplicate the first ones
missing = number - len(lonpoints)
lonpoints = np.append(lonpoints, lonpoints[0:missing])
latpoints = np.append(latpoints, latpoints[0:missing])
else:
break
# Finally seed at calculated positions
self.seed_elements(lonpoints, latpoints, number=number, **kwargs)
[docs]
@require_mode(mode=Mode.Ready)
def seed_from_wkt(self, wkt, number=None, **kwargs):
"""Seeds elements within (multi)polygons from WKT"""
try:
from osgeo import ogr, osr
except Exception as e:
logger.warning(e)
raise ValueError('OGR library is needed to parse WKT')
if number is None:
number = self.get_config('seed:number')
geom = ogr.CreateGeometryFromWkt(wkt)
total_area = 0
for i in range(0, geom.GetGeometryCount()):
g = geom.GetGeometryRef(i)
total_area += g.GetArea()
logger.info('Total area of all polygons: %s m2' % total_area)
num_seeded = 0
for i in range(0, geom.GetGeometryCount()):
g = geom.GetGeometryRef(i)
num_elements = int(number * g.GetArea() / total_area)
if i == geom.GetGeometryCount() - 1:
# For the last feature we seed the remaining number,
# avoiding difference due to rounding:
num_elements = number - num_seeded
logger.info('\tSeeding %s elements within polygon number %s' %
(num_elements, str(i)))
try:
g.Transform(coordTrans)
except:
pass
b = g.GetBoundary()
if b is not None:
points = b.GetPoints()
lons = [p[0] for p in points]
lats = [p[1] for p in points]
else:
# Alternative if OGR is not built with GEOS support
r = g.GetGeometryRef(0)
lons = [r.GetX(j) for j in range(r.GetPointCount())]
lats = [r.GetY(j) for j in range(r.GetPointCount())]
self.seed_within_polygon(lons=lons,
lats=lats,
number=num_elements,
**kwargs)
num_seeded += num_elements
[docs]
@require_mode(mode=Mode.Ready)
def seed_from_shapefile(self,
shapefile,
number,
layername=None,
featurenum=None,
**kwargs):
"""Seeds elements within contours read from a shapefile"""
try:
from osgeo import ogr, osr
except Exception as e:
logger.warning(e)
raise ValueError('OGR library is needed to read shapefiles.')
if 'timeformat' in kwargs:
# Recondstructing time from filename, where 'timeformat'
# is forwarded to datetime.strptime()
kwargs['time'] = datetime.strptime(os.path.basename(shapefile),
kwargs['timeformat'])
del kwargs['timeformat']
num_seeded_before = self.num_elements_scheduled()
targetSRS = osr.SpatialReference()
targetSRS.ImportFromEPSG(4326)
try:
s = ogr.Open(shapefile)
except:
s = shapefile
for layer in s:
if layername is not None and layer.GetName() != layername:
logger.info('Skipping layer: ' + layer.GetName())
continue
else:
logger.info('Seeding for layer: %s (%s features)' %
(layer.GetDescription(), layer.GetFeatureCount()))
coordTrans = osr.CoordinateTransformation(layer.GetSpatialRef(),
targetSRS)
if featurenum is None:
featurenum = range(1, layer.GetFeatureCount() + 1)
else:
featurenum = np.atleast_1d(featurenum)
if max(featurenum) > layer.GetFeatureCount():
raise ValueError('Only %s features in layer.' %
layer.GetFeatureCount())
# Loop first through all features to determine total area
layer.ResetReading()
area_srs = osr.SpatialReference()
area_srs.ImportFromEPSG(3857)
areaTransform = osr.CoordinateTransformation(
layer.GetSpatialRef(), area_srs)
areas = np.zeros(len(featurenum))
for i, f in enumerate(featurenum):
feature = layer.GetFeature(f - 1) # Note 1-indexing, not 0
if feature is not None:
gom = feature.GetGeometryRef().Clone()
gom.Transform(areaTransform)
areas[i] = gom.GetArea()
total_area = np.sum(areas)
layer.ResetReading() # Rewind to first layer
logger.info('Total area of all polygons: %s m2' % total_area)
# Find number of points per polygon
numbers = np.round(number * areas / total_area).astype(int)
numbers[numbers.argmax()] += int(number - sum(numbers))
for i, f in enumerate(featurenum):
feature = layer.GetFeature(f - 1)
if feature is None:
continue
num_elements = numbers[i]
geom = feature.GetGeometryRef()
logger.info('\tSeeding %s elements within polygon number %s' %
(num_elements, featurenum[i]))
try:
geom.Transform(coordTrans)
except Exception as e:
logger.warning('Could not transform coordinates:')
logger.warning(e)
pass
#b = geom.GetBoundary()
#if b is not None:
# points = b.GetPoints()
# lons = [p[0] for p in points]
# lats = [p[1] for p in points]
#else:
# Alternative if OGR is not built with GEOS support
r = geom.GetGeometryRef(0)
lons = [r.GetY(j) for j in range(r.GetPointCount())]
lats = [r.GetX(j) for j in range(r.GetPointCount())]
self.seed_within_polygon(lons=lons,
lats=lats,
number=num_elements,
**kwargs)
[docs]
@require_mode(mode=Mode.Ready)
def seed_letters(self, text, lon, lat, time, number, scale=1.2):
"""Seed elements within text polygons"""
from matplotlib.font_manager import FontProperties
fp = FontProperties(family='Bitstream Vera Sans', weight='bold')
pol = matplotlib.textpath.TextPath((lon, lat),
text,
size=1 * scale,
prop=fp)
patch = matplotlib.patches.PathPatch(pol,
facecolor='none',
edgecolor='black',
transform=ccrs.PlateCarree())
po = patch.get_path().to_polygons()
for p in po:
self.seed_within_polygon(lons=p[:, 0],
lats=p[:, 1],
number=number,
time=time)
[docs]
@require_mode(mode=Mode.Ready)
def seed_from_ladim(self, ladimfile, roms):
"""Seed elements from ladim \\*.rls text file: [time, x, y, z, name]"""
data = np.loadtxt(ladimfile,
dtype={
'names': ('time', 'x', 'y', 'z'),
'formats': ('S20', 'f4', 'f4', 'f4')
},
usecols=(0, 1, 2, 3))
time = [datetime.strptime(t, "%Y-%m-%dT%H") for t in data['time']]
time = np.array(time)
lon, lat = roms.xy2lonlat(data['x'], data['y'])
z = -data['z']
logger.info('Seeding %i elements from %s:' % (len(lon), ladimfile))
logger.info(' Lons: %f to %f' % (lon.min(), lon.max()))
logger.info(' Lats: %f to %f' % (lat.min(), lat.max()))
logger.info(' Depths: %f to %f' % (z.min(), z.max()))
logger.info(' Time: %s to %s' % (time.min(), time.max()))
elements = self.ElementType(lon=lon, lat=lat, z=-z)
self.schedule_elements(elements, time)
[docs]
def horizontal_diffusion(self):
"""Move elements with random walk according to given horizontal diffuivity."""
D = self.get_config('drift:horizontal_diffusivity')
if D == 0:
logger.debug('Horizontal diffusivity is 0, no random walk.')
return
if self.num_elements_active() == 0:
logger.debug('No active elements, skipping horizontal diffusivity.')
return
dt = np.abs(self.time_step.total_seconds())
x_vel = self.elements.moving * np.sqrt(2 * D / dt) * np.random.normal(
scale=1, size=self.num_elements_active())
y_vel = self.elements.moving * np.sqrt(2 * D / dt) * np.random.normal(
scale=1, size=self.num_elements_active())
speed = np.sqrt(x_vel * x_vel + y_vel * y_vel)
logger.debug(
'Moving elements according to horizontal diffusivity of %s, with speeds between %s and %s m/s'
% (D, speed.min(), speed.max()))
self.update_positions(x_vel, y_vel)
[docs]
def deactivate_elements(self, indices, reason='deactivated'):
"""Schedule deactivated particles for deletion (at end of step)"""
if any(indices) is False:
return
if reason not in self.status_categories:
self.status_categories.append(reason)
logger.debug('Added status %s' % (reason))
reason_number = self.status_categories.index(reason)
#if not hasattr(self.elements.status, "__len__"):
if len(np.atleast_1d(self.elements.status)) == 1:
status = self.elements.status.item()
self.elements.status = np.zeros(self.num_elements_active())
self.elements.status.fill(status)
# Deactivate elements, if they have not already been deactivated
self.elements.status[indices & (self.elements.status ==0)] = \
reason_number
self.elements.moving[indices] = 0
logger.debug('%s elements scheduled for deactivation (%s)' %
(np.sum(indices), reason))
logger.debug(
'\t(z: %f to %f)' %
(self.elements.z[indices].min(), self.elements.z[indices].max()))
[docs]
def remove_deactivated_elements(self):
"""Moving deactivated elements from self.elements
to self.elements_deactivated."""
# All particles scheduled for deletion
indices = (self.elements.status != 0)
#try:
# len(indices)
#except:
if len(indices) == 0 or np.sum(indices) == 0:
logger.debug('No elements to deactivate')
return # No elements scheduled for deactivation
# Basic, but some more housekeeping will be required later
self.elements.move_elements(self.elements_deactivated, indices)
logger.debug('Removed %i elements.' % (np.sum(indices)))
if hasattr(self, 'environment'):
self.environment = self.environment[~indices]
logger.debug('Removed %i values from environment.' %
(np.sum(indices)))
if hasattr(self, 'environment_profiles') and \
self.environment_profiles is not None:
for varname, profiles in self.environment_profiles.items():
logger.debug('remove items from profile for ' + varname)
if varname != 'z':
self.environment_profiles[varname] = \
profiles[:, ~indices]
logger.debug('Removed %i values from environment_profiles.' %
(np.sum(indices)))
#if self.num_elements_active() == 0:
# raise ValueError('No more active elements.') # End simulation
[docs]
@require_mode(mode=Mode.Run, post_next_mode=True)
def run(self,
time_step=None,
steps=None,
time_step_output=None,
duration=None,
end_time=None,
outfile=None,
export_variables=None,
export_buffer_length=100,
stop_on_error=False):
"""Start a trajectory simulation, after initial configuration.
Performs the main loop:
- Obtain environment data for positions of all particles.
- Call method 'update' to update (incl advect) particle properties.
until one of the following conditions are met:
- Maximum number of steps are reached
- A needed variable can not be obtained by any reader
(outside spatial/temporal domain) and has no fallback
(default) value.
- All particles have been deactivated (e.g. by stranding)
- Occurance of any error, whose trace will be output to terminal.
Before starting a model run, readers must be added for all
required variables, unless fallback values have been specified.
Some particles/elements must have been scheduled for seeding, and the
run will start at the time when the first element has been scheduled..
Arguments:
time_step: interval between particles updates, in seconds or as
timedelta. Default: 3600 seconds (1 hour)
time_step_output: Time step at which element properties are stored
and eventually written to file.
Timedelta object or seconds.
Default: same as time_step, meaning that all steps are stored
The length of the simulation is specified by defining one
(and only one) of the following parameters:
- steps: integer, maximum number of steps. End of simulation
will be self.start_time + steps*self.time_step
- duration: timedelta defining the length of the simulation
- end_time: datetime object defining the end of the simulation
export_variables: list of variables and parameter names to be
saved to file. Default is None (all variables are saved)
"""
# Exporting software and hardware specification, for possible debugging
logger.debug(opendrift.versions())
self.timer_end('configuration')
self.timer_start('preparing main loop')
if self.num_elements_scheduled() == 0:
raise ValueError('Please seed elements before starting a run.')
self.elements = self.ElementType()
# Export seed_geojson as FeatureCollection string
self.add_metadata('seed_geojson',
geojson.FeatureCollection(self.seed_geojson))
if outfile is None and export_buffer_length is not None:
logger.debug('No output file is specified, '
'neglecting export_buffer_length')
export_buffer_length = None
# Some cleanup needed if starting from imported state
if self.steps_calculation >= 1:
self.steps_calculation = 0
if self.history is not None:
# Delete history matrix before new run
self.history = None
# Renumbering elements from 0 to num_elements, necessary fix when
# importing from file, where elements may have been deactivated
# TODO: should start from 1?
self.elements.ID = np.arange(0, self.num_elements_active())
########################
# Simulation time step
########################
if time_step is None:
time_step = timedelta(
minutes=self.get_config('general:time_step_minutes'))
if type(time_step) is not timedelta:
# Time step may be given in seconds, as alternative to timedelta
time_step = timedelta(seconds=time_step)
self.time_step = time_step
if time_step_output is None:
time_step_output = self.get_config(
'general:time_step_output_minutes')
if time_step_output is None:
self.time_step_output = self.time_step
else:
self.time_step_output = timedelta(minutes=time_step_output)
else:
if type(time_step_output) is timedelta:
self.time_step_output = time_step_output
else:
self.time_step_output = timedelta(seconds=time_step_output)
if self.time_step_output.days >= 0 and self.time_step.days < 0:
self.time_step_output = -self.time_step_output
time_step_ratio = self.time_step_output.total_seconds() / \
self.time_step.total_seconds()
if time_step_ratio < 1:
raise ValueError('Output time step must be equal or larger '
'than calculation time step.')
if not time_step_ratio.is_integer():
raise ValueError('Ratio of calculation and output time steps '
'must be an integer - given ratio is %s' %
time_step_ratio)
########################
# Simulation duration
########################
if time_step.days < 0:
logger.info(
'Backwards simulation, starting from last seeded element')
self.start_time = self.elements_scheduled_time.max()
if (duration is not None and end_time is not None) or \
(duration is not None and steps is not None) or \
(steps is not None and end_time is not None):
raise ValueError('Only one of "steps", "duration" and "end_time" '
'may be provided simultaneously')
if duration is None and end_time is None:
if steps is not None:
duration = steps * self.time_step
else:
for reader in self.env.readers.values():
if reader.end_time is not None:
if end_time is None:
end_time = reader.end_time
else:
end_time = min(end_time, reader.end_time)
logger.info('Duration, steps or end time not specified, '
'running until end of first reader: %s' %
(end_time))
if duration is None:
duration = end_time - self.start_time
if time_step.days < 0 and duration.days >= 0:
# Duration shall also be negative for backwards run
duration = -duration
if np.sign(duration.total_seconds()) * np.sign(
time_step.total_seconds()) < 0:
raise ValueError(
"Time step must be negative if duration is negative.")
self.expected_steps_output = duration.total_seconds() / \
self.time_step_output.total_seconds() + 1 # Includes start and end
self.expected_steps_calculation = duration.total_seconds() / \
self.time_step.total_seconds()
self.expected_steps_output = int(self.expected_steps_output)
self.expected_steps_calculation = int(self.expected_steps_calculation)
self.expected_end_time = self.start_time + self.expected_steps_calculation * self.time_step
##############################################################
# Prepare readers for the requested simulation domain/time
##############################################################
max_distance = \
self.get_config('drift:max_speed')*self.expected_steps_calculation * \
np.abs(self.time_step.total_seconds())
deltalat = max_distance / 111000.
deltalon = deltalat / np.cos(
np.radians(np.mean(self.elements_scheduled.lat)))
# TODO: extent should ideally be a general polygon, not only lon/lat-min/max
# TODO: Should also take into account eventual lifetime of elements
simulation_extent = [
np.maximum(-360,
self.elements_scheduled.lon.min() - deltalon),
np.maximum(-89,
self.elements_scheduled.lat.min() - deltalat),
np.minimum(360,
self.elements_scheduled.lon.max() + deltalon),
np.minimum(89,
self.elements_scheduled.lat.max() + deltalat)
]
if simulation_extent[2] == 360 and simulation_extent[0] < 0:
simulation_extent[0] = 0
logger.debug(
'Finalizing environment and preparing readers for simulation coverage (%s) and time (%s to %s)'
% (simulation_extent, self.start_time, self.expected_end_time))
# Store expected simulation extent, to check if new readers have coverage
self.simulation_extent = simulation_extent
self.env.finalize(self.simulation_extent)
####################################################################
# Preparing history array for storage in memory and eventually file
####################################################################
if export_buffer_length is None:
self.export_buffer_length = self.expected_steps_output
else:
self.export_buffer_length = export_buffer_length
if self.time_step.days < 0:
# For backwards simulation, we start at last seeded element
logger.info('Backwards simulation, starting at '
'time of last seeded element')
self.time = self.elements_scheduled_time.max()
# Flipping ID array, so that lowest IDs are released first
self.elements_scheduled.ID = \
np.flipud(self.elements_scheduled.ID)
else:
# Forward simulation, start time has been set when seeding
self.time = self.start_time
# Add the output variables which are always required
if export_variables is not None:
export_variables = list(
set(export_variables + ['lon', 'lat', 'ID', 'status']))
self.export_variables = export_variables
# Initialise array to hold history (element properties and environment)
# for export to file.
history_dtype_fields = [(name,
self.ElementType.variables[name]['dtype'])
for name in self.ElementType.variables]
# Add environment variables
self.history_metadata = self.ElementType.variables.copy()
for env_var in self.required_variables:
history_dtype_fields.append((env_var, np.dtype('float32')))
self.history_metadata[env_var] = {}
# Remove variables from output array, if only subset is requested
if self.export_variables is not None:
history_dtype_fields = [
f for f in history_dtype_fields
if f[0] in self.export_variables
]
for m in list(self.history_metadata):
if m not in self.export_variables:
del self.history_metadata[m]
history_dtype = np.dtype(history_dtype_fields)
self.history = np.ma.array(np.zeros(
(len(self.elements_scheduled), self.export_buffer_length)),
dtype=history_dtype)
self.history.mask = True
self.steps_exported = 0
if outfile is not None:
self.io_init(outfile)
else:
self.outfile = None
# Move point seeded on land to ocean
if self.get_config('seed:ocean_only') is True and \
('land_binary_mask' in self.required_variables):
#('land_binary_mask' not in self.fallback_values) and \
self.timer_start('preparing main loop:moving elements to ocean')
self.elements_scheduled.lon, self.elements_scheduled.lat = \
self.closest_ocean_points(self.elements_scheduled.lon,
self.elements_scheduled.lat)
self.timer_end('preparing main loop:moving elements to ocean')
#############################
# Check validity domain
#############################
validity_domain = [
self.get_config('drift:deactivate_west_of'),
self.get_config('drift:deactivate_east_of'),
self.get_config('drift:deactivate_south_of'),
self.get_config('drift:deactivate_north_of')
]
if validity_domain == [None, None, None, None]:
self.validity_domain = None
else:
self.validity_domain = validity_domain
#############################
# Model specific preparation
#############################
self.prepare_run()
##########################
# Main loop
##########################
self.add_metadata('simulation_time', datetime.now())
self.timer_end('preparing main loop')
self.timer_start('main loop')
self.memory_usage = np.array([])
for i in range(self.expected_steps_calculation):
self.memory_usage = np.append(self.memory_usage, psutil.virtual_memory().used / (1024.0**3))
try:
# Release elements
self.release_elements()
if self.num_elements_active(
) == 0 and self.num_elements_scheduled() > 0:
logger.info(
'No active but %s scheduled elements, skipping timestep %s (%s)'
% (self.num_elements_scheduled(),
self.steps_calculation + 1 , self.time))
self.state_to_buffer() # Append status to history array
self.steps_calculation += 1
if self.time is not None:
self.time = self.time + self.time_step
continue
self.interact_with_seafloor()
if self.show_continuous_performance is True:
logger.info(self.performance())
# Display time to terminal
logger.debug('===================================' * 2)
logger.info('%s - step %i of %i - %i active elements '
'(%i deactivated)' %
(self.time, self.steps_calculation + 1,
self.expected_steps_calculation,
self.num_elements_active(),
self.num_elements_deactivated()))
logger.debug('%s elements scheduled.' %
self.num_elements_scheduled())
logger.debug('===================================' * 2)
if len(self.elements.lon) > 0:
lonmin = self.elements.lon.min()
lonmax = self.elements.lon.max()
latmin = self.elements.lat.min()
latmax = self.elements.lat.max()
zmin = self.elements.z.min()
zmax = self.elements.z.max()
if latmin == latmax:
logger.debug('\t\tlatitude = %s' % (latmin))
else:
logger.debug('\t\t%s <- latitude -> %s' %
(latmin, latmax))
if lonmin == lonmax:
logger.debug('\t\tlongitude = %s' % (lonmin))
else:
logger.debug('\t\t%s <- longitude -> %s' %
(lonmin, lonmax))
if zmin == zmax:
logger.debug('\t\tz = %s' % (zmin))
else:
logger.debug('\t\t%s <- z -> %s' % (zmin, zmax))
logger.debug('---------------------------------')
self.environment, self.environment_profiles, missing = \
self.env.get_environment(list(self.required_variables),
self.time,
self.elements.lon,
self.elements.lat,
self.elements.z,
self.required_profiles,
self.profiles_depth)
self.store_previous_variables()
self.calculate_missing_environment_variables()
if any(missing):
self.report_missing_variables()
self.interact_with_coastline()
self.interact_with_seafloor()
self.deactivate_elements(missing, reason='missing_data')
self.state_to_buffer() # Append status to history array
self.increase_age_and_retire()
self.remove_deactivated_elements()
# Propagate one timestep forwards
self.steps_calculation += 1
if self.num_elements_active(
) == 0 and self.num_elements_scheduled() == 0:
raise ValueError(
'No more active or scheduled elements, quitting.')
# Store location, in case elements shall be moved back
self.store_present_positions()
#####################################################
if self.num_elements_active() > 0:
logger.debug('Calling %s.update()' % type(self).__name__)
self.timer_start('main loop:updating elements')
self.update()
self.timer_end('main loop:updating elements')
else:
logger.info('No active elements, skipping update() method')
#####################################################
self.horizontal_diffusion()
if self.num_elements_active(
) == 0 and self.num_elements_scheduled() == 0:
raise ValueError(
'No active or scheduled elements, quitting simulation')
logger.debug('%s active elements (%s deactivated)' %
(self.num_elements_active(),
self.num_elements_deactivated()))
# Updating time
if self.time is not None:
self.time = self.time + self.time_step
except Exception as e:
message = ('The simulation stopped before requested '
'end time was reached.')
logger.warning(message)
self.store_message(message)
logger.info('========================')
logger.info('End of simulation:')
logger.info(e)
logger.info(traceback.format_exc())
logger.info(self.get_messages())
if not hasattr(self, 'environment'):
sys.exit('Simulation aborted. ' + self.get_messages())
logger.info('========================')
if stop_on_error is True:
sys.exit('Stopping on error. ' + self.get_messages())
if self.steps_calculation <= 1:
raise ValueError('Simulation stopped within '
'first timestep. ' + self.get_messages())
break
self.timer_end('main loop')
self.timer_start('cleaning up')
logger.debug('Cleaning up')
self.interact_with_coastline(final=True)
self.state_to_buffer() # Append final status to buffer
#############################
# Add some metadata
#############################
for var in self.required_variables:
keyword = 'reader_' + var
if var not in self.env.priority_list:
fallback = self.get_config(f'environment:fallback:{var}')
if fallback is not None:
self.add_metadata(keyword, fallback)
else:
self.add_metadata(keyword, None)
else:
readers = self.env.priority_list[var]
if readers[0].startswith(
'constant_reader') and var in self.env.readers[
readers[0]]._parameter_value_map:
self.add_metadata(
keyword, self.env.readers[
readers[0]]._parameter_value_map[var][0])
else:
self.add_metadata(keyword, self.env.priority_list[var])
self.timer_end('cleaning up')
self.timer_end('total time')
if outfile is not None:
logger.debug('Writing and closing output file: %s' % outfile)
# Write buffer to outfile, and close
#if self.steps_output >= self.steps_exported:
# KFD: >= changed to > 4th June 2024, as this is probably correct
# Unit tests are passing in both cases
if self.steps_output > self.steps_exported:
# Write last lines, if needed
self.io_write_buffer()
self.io_close()
# Remove any elements scheduled for deactivation during last step
self.remove_deactivated_elements()
if export_buffer_length is None:
# Remove columns for unseeded elements in history array
if self.num_elements_scheduled() > 0:
logger.info(
'Removing %i unseeded elements from history array' %
self.num_elements_scheduled())
mask = np.ones(self.history.shape[0], dtype=bool)
mask[self.elements_scheduled.ID - 1] = False
self.history = self.history[mask, :]
# Remove rows for unreached timsteps in history array
self.history = self.history[:, range(self.steps_output)]
else: # If output has been flushed to file during run, we
# need to reimport from file to get all data in memory
del self.environment
if hasattr(self, 'environment_profiles'):
del self.environment_profiles
self.io_import_file(outfile)
[docs]
def increase_age_and_retire(self):
"""Increase age of elements, and retire if older than config setting."""
# Increase age of elements
self.elements.age_seconds += self.time_step.total_seconds()
# Deactivate elements that exceed a certain age
if self.get_config('drift:max_age_seconds') is not None:
self.deactivate_elements(
self.elements.age_seconds
>= self.get_config('drift:max_age_seconds'),
reason='retired')
# Deacticate any elements outside validity domain set by user
if self.validity_domain is not None:
W, E, S, N = self.validity_domain
if W is not None:
self.deactivate_elements(self.elements.lon < W,
reason='outside')
if E is not None:
self.deactivate_elements(self.elements.lon > E,
reason='outside')
if S is not None:
self.deactivate_elements(self.elements.lat < S,
reason='outside')
if N is not None:
self.deactivate_elements(self.elements.lat > N,
reason='outside')
[docs]
def state_to_buffer(self):
"""Append present state (elements and environment) to recarray."""
steps_calculation_float = \
(self.steps_calculation * self.time_step.total_seconds() /
self.time_step_output.total_seconds()) + 1
if self.time_step <= timedelta(seconds=1):
self.steps_output = int(np.round(steps_calculation_float))
else:
self.steps_output = int(np.floor(steps_calculation_float))
ID_ind = self.elements.ID - 1
time_ind = self.steps_output - 1 - self.steps_exported
if self.steps_calculation == self.expected_steps_calculation:
final_time_step = True
else:
final_time_step = False
if steps_calculation_float.is_integer() or self.time_step < timedelta(
seconds=1) or final_time_step is True:
element_ind = range(len(ID_ind)) # We write all elements
else:
deactivated = np.where(self.elements.status != 0)[0]
if len(deactivated) == 0:
return # No deactivated elements this sub-timestep
# We write history for deactivated elements only:
logger.debug('Writing history for %s deactivated elements' %
len(deactivated))
ID_ind = ID_ind[deactivated]
element_ind = deactivated
time_ind = np.minimum(time_ind + 1, self.history.shape[1] - 1)
# TODO: storing of variables and environment below should be collected in a single loop
# Store present state in history recarray
for i, var in enumerate(self.elements.variables):
if self.export_variables is not None and \
var not in self.export_variables:
continue
# Temporarily assuming elements numbered
# from 0 to num_elements_active()
# Does not hold when importing ID from a saved file, where
# some elements have been deactivated
self.history[var][ID_ind, time_ind] = \
getattr(self.elements, var)[element_ind]
if len(ID_ind) > 0:
newmin = np.min(self.history[var][ID_ind, time_ind])
newmax = np.max(self.history[var][ID_ind, time_ind])
if var not in self.minvals:
self.minvals[var] = newmin
self.maxvals[var] = newmax
else:
self.minvals[var] = np.minimum(self.minvals[var], newmin)
self.maxvals[var] = np.maximum(self.maxvals[var], newmax)
# Copy environment data to history array
for i, var in enumerate(self.environment.dtype.names):
if self.export_variables is not None and \
var not in self.export_variables:
continue
self.history[var][ID_ind, time_ind] = \
getattr(self.environment, var)[element_ind]
if len(ID_ind) > 0:
newmin = np.min(self.history[var][ID_ind, time_ind])
newmax = np.max(self.history[var][ID_ind, time_ind])
if var not in self.minvals:
self.minvals[var] = newmin
self.maxvals[var] = newmax
else:
self.minvals[var] = np.minimum(self.minvals[var], newmin)
self.maxvals[var] = np.maximum(self.maxvals[var], newmax)
# Call writer if buffer is full
if (self.outfile is not None) and \
((self.steps_output - self.steps_exported) ==
self.export_buffer_length):
self.io_write_buffer()
[docs]
def report_missing_variables(self):
"""Issue warning if some environment variables missing."""
missing_variables = []
for var in self.required_variables:
if np.isnan(getattr(self.environment, var).min()):
missing_variables.append(var)
if len(missing_variables) > 0:
logger.warning('Missing variables: ' + str(missing_variables))
self.store_message('Missing variables: ' + str(missing_variables))
[docs]
def index_of_activation_and_deactivation(self):
"""Return the indices when elements were seeded and deactivated."""
firstlast = np.ma.notmasked_edges(self.history['lon'], axis=1)
index_of_activation = firstlast[0][1]
index_of_deactivation = firstlast[1][1]
if len(index_of_deactivation) < self.history['lon'].shape[0]:
missingind = np.setdiff1d(
np.arange(0, self.history['lon'].shape[0]), firstlast[0][0])
logger.warning(
'%s elements were never seeded, removing from history array (this is probably caused by importing an old file)'
% len(missingind))
self.history = self.history[firstlast[0][0], :]
return index_of_activation, index_of_deactivation
[docs]
def set_up_map(self,
corners=None,
buffer=.1,
delta_lat=None,
lscale=None,
fast=False,
hide_landmask=False,
xlocs = None,
ylocs = None,
**kwargs):
"""
Generate Figure instance on which trajectories are plotted.
:param hide_landmask: do not plot landmask (default False)
:type hide_landmask: bool
provide corners=[lonmin, lonmax, latmin, latmax] for specific map selection
"""
logger.debug(f"Setting up map: {corners=}, {fast=}, {lscale=}")
# Initialise map
if hasattr(self, 'ds'): # If dataset is lazily imported
lons = self.ds.lon
lats = self.ds.lat
if not hasattr(self, 'lonmin'):
logger.debug('Finding min longitude...')
self.lonmin = np.nanmin(self.ds.lon)
logger.debug('Finding max longitude...')
self.lonmax = np.nanmax(self.ds.lon)
logger.debug('Finding min latitude...')
self.latmin = np.nanmin(self.ds.lat)
logger.debug('Finding max latitude...')
self.latmax = np.nanmax(self.ds.lat)
else:
lons, lats = self.get_lonlats() # TODO: to be removed
if corners is not None: # User provided map corners
lonmin = corners[0]
lonmax = corners[1]
latmin = corners[2]
latmax = corners[3]
elif hasattr(self, 'lonmin'): # if dataset is lazily imported
lonmin = self.lonmin - buffer * 2
lonmax = self.lonmax + buffer * 2
latmin = self.latmin - buffer
latmax = self.latmax + buffer
else:
lons, lats = self.get_lonlats()
if 'compare_lonmin' in kwargs: # checking min/max lon/lat of other simulations
lonmin = np.minimum(kwargs['compare_lonmin'], np.nanmin(lons))
lonmax = np.maximum(kwargs['compare_lonmax'], np.nanmax(lons))
latmin = np.minimum(kwargs['compare_latmin'], np.nanmin(lats))
latmax = np.maximum(kwargs['compare_latmax'], np.nanmax(lats))
else:
lonmin = np.nanmin(lons)
lonmax = np.nanmax(lons)
latmin = np.nanmin(lats)
latmax = np.nanmax(lats)
lonmin = lonmin - buffer * 2
lonmax = lonmax + buffer * 2
latmin = latmin - buffer
latmax = latmax + buffer
if fast is True:
logger.warning(
'Plotting fast. This will make your plots less accurate.')
import matplotlib.style as mplstyle
mplstyle.use(['fast'])
# use a spherical earth
axis = 57.29577951308232 # something to do with pi
globe = ccrs.Globe(ellipse=None,
semimajor_axis=axis,
semiminor_axis=axis)
self.crs_plot = ccrs.Mercator(globe=globe)
self.crs_lonlat = ccrs.PlateCarree(globe=globe)
if lscale is None:
lscale = 'c'
else:
self.crs_plot = ccrs.Mercator()
self.crs_lonlat = ccrs.PlateCarree()
if lscale is None:
lscale = 'auto'
meanlat = (latmin + latmax) / 2
aspect_ratio = float(latmax - latmin) / (float(lonmax - lonmin))
aspect_ratio = aspect_ratio / np.cos(np.radians(meanlat))
if 'figsize' in kwargs:
figsize = kwargs['figsize']
else:
figsize = 11. # inches
if aspect_ratio > 1:
fig = plt.figure(figsize=(figsize / aspect_ratio, figsize))
else:
fig = plt.figure(figsize=(figsize, figsize * aspect_ratio))
ax = fig.add_subplot(111, projection=self.crs_plot)
ax.set_extent([lonmin, lonmax, latmin, latmax], crs=self.crs_lonlat)
gl = ax.gridlines(self.crs_lonlat, draw_labels=True, xlocs=xlocs, ylocs=ylocs)
gl.top_labels = None
if 'ocean_color' in kwargs:
ax.patch.set_facecolor(kwargs['ocean_color'])
ocean_color = kwargs['ocean_color']
else:
ocean_color = 'white'
if 'land_color' in kwargs:
land_color = kwargs['land_color']
else:
if fast is True:
land_color = 'gray'
else:
land_color = cfeature.COLORS['land']
if 'text' in kwargs:
if not isinstance(kwargs['text'], list):
text = list(kwargs['text'])
else:
text = kwargs['text']
for te in text:
plt.text(transform=self.crs_lonlat, **te)
if 'box' in kwargs:
if not isinstance(kwargs['box'], list):
box = list(kwargs['box'])
else:
box = kwargs['box']
for bx in box:
lonmn = bx['lon'][0]
lonmx = bx['lon'][1]
latmn = bx['lat'][0]
latmx = bx['lat'][1]
del bx['lon']
del bx['lat']
if 'text' in bx:
plt.text(x=lonmn,
y=latmx,
s=bx['text'],
transform=self.crs_lonlat)
del bx['text']
patch = matplotlib.patches.Rectangle(
xy=[lonmn, latmn],
width=lonmx - lonmn,
height=latmx - latmn,
transform=self.crs_lonlat,
zorder=10,
**bx)
ax.add_patch(patch)
if not hide_landmask:
if 'land_binary_mask' in self.env.priority_list and self.env.priority_list[
'land_binary_mask'][0] == 'shape':
logger.debug('Using custom shapes for plotting land..')
ax.add_geometries(self.env.readers['shape'].polys,
self.crs_lonlat,
facecolor=land_color,
edgecolor='black')
else:
reader_global_landmask.plot_land(ax, lonmin, latmin, lonmax,
latmax, fast, ocean_color,
land_color, lscale,
crs_plot=self.crs_plot,
crs_lonlat=self.crs_lonlat)
fig.canvas.draw()
fig.set_layout_engine('tight')
if not hasattr(self, 'ds'):
try:
firstlast = np.ma.notmasked_edges(lons, axis=1)
index_of_first = firstlast[0][1]
index_of_last = firstlast[1][1]
except:
index_of_last = 0
else:
index_of_first = None
index_of_last = None
try: # Activate figure zooming
mng = plt.get_current_fig_manager()
mng.toolbar.zoom()
except:
pass
try: # Maximise figure window size
mng.resize(*mng.window.maxsize())
except:
pass
return fig, ax, self.crs_plot, lons.T, lats.T, index_of_first, index_of_last
[docs]
def get_lonlats(self):
if self.history is not None:
lons = self.history['lon']
lats = self.history['lat']
else:
if self.steps_output > 0:
lons = np.ma.array(np.reshape(self.elements.lon, (1, -1))).T
lats = np.ma.array(np.reshape(self.elements.lat, (1, -1))).T
else:
lons = np.ma.array(
np.reshape(self.elements_scheduled.lon, (1, -1))).T
lats = np.ma.array(
np.reshape(self.elements_scheduled.lat, (1, -1))).T
return lons, lats
[docs]
def animation(self,
buffer=.2,
corners=None,
filename=None,
compare=None,
compare_marker='o',
background=None,
alpha=1,
bgalpha=.5,
vmin=None,
vmax=None,
drifter=None,
shapefiles=None,
skip=None,
scale=None,
color=False,
clabel=None,
colorbar=True,
cmap=None,
density=False,
show_elements=True,
show_trajectories=False,
linewidth=1,
trajectory_alpha=.1,
hide_landmask=False,
density_pixelsize_m=1000,
unitfactor=1,
lcs=None,
surface_only=False,
markersize=20,
markersize_scaling=None,
origin_marker=None,
legend=None,
legend_loc='best',
title='auto',
fps=8,
lscale=None,
fast=False,
blit=False,
frames=None,
xlocs = None,
ylocs = None,
**kwargs):
"""Animate last run."""
filename = str(filename) if filename is not None else None
if self.history is not None and self.num_elements_total(
) == 0 and not hasattr(self, 'ds'):
raise ValueError('Please run simulation before animating')
if compare is not None:
compare_list, compare_args = self._get_comparison_xy_for_plots(
compare)
kwargs.update(compare_args)
start_time = datetime.now()
if cmap is None:
cmap = 'jet'
if isinstance(cmap, str):
cmap = matplotlib.colormaps[cmap]
if color is False and background is None and lcs is None and density is False:
colorbar = False
markercolor = self.plot_comparison_colors[0]
if isinstance(density, str):
# Density field is weighted by this variable
# TODO: not yet implemented!
density_weight = density
density = True
else:
if density is True:
density_weight = None
elif density is not False:
density_weight = density
density = True
if density is True: # Get density arrays
if hasattr(self, 'ds'): # opened with Xarray
if origin_marker is None:
origin_marker = 0
per_origin_marker = False
else:
per_origin_marker = True
H, H_om, lon_array, lat_array = self.get_density_xarray(
pixelsize_m=density_pixelsize_m, weights=density_weight)
if per_origin_marker is True:
H = H_om[:, :, :, origin_marker]
else:
if origin_marker is not None:
raise ValueError(
'Separation by origin_marker is only active when imported from file with '
'open_xarray: https://opendrift.github.io/gallery/example_huge_output.html'
)
H, H_submerged, H_stranded, lon_array, lat_array = \
self.get_density_array(pixelsize_m=density_pixelsize_m,
weight=density_weight)
H = H + H_submerged + H_stranded
# Find map coordinates and plot points with empty data
fig, ax, crs, x, y, index_of_first, index_of_last = \
self.set_up_map(buffer=buffer, corners=corners, lscale=lscale,
fast=fast, hide_landmask=hide_landmask, xlocs = xlocs, ylocs = ylocs, **kwargs)
def plot_timestep(i):
"""Sub function needed for matplotlib animation."""
ret = [points, points_deactivated
] # list of elements to return for blitting
if title == 'auto':
ax.set_title('%s\n%s UTC' % (self._figure_title(), times[i]))
else:
ax.set_title('%s\n%s UTC' % (title, times[i]))
if background is not None:
ret.append(bg)
if isinstance(background, xr.DataArray):
scalar = background[i, :, :].values
else:
map_x, map_y, scalar, u_component, v_component = \
self.get_map_background(ax, background, self.crs_plot,
time=times[i])
# https://stackoverflow.com/questions/18797175/animation-with-pcolormesh-routine-in-matplotlib-how-do-i-initialize-the-data
bg.set_array(scalar.ravel())
if type(background) is list:
ret.append(bg_quiv)
bg_quiv.set_UVC(u_component[::skip, ::skip],
v_component[::skip, ::skip])
if lcs is not None:
ax.pcolormesh(lcs['lon'],
lcs['lat'],
lcs['ALCS'][i, :, :],
alpha=bgalpha,
vmin=vmin,
vmax=vmax,
cmap=cmap,
transform=self.crs_lonlat)
if density is True:
# Update density plot
pm.set_array(H[i, :, :].ravel())
ret.append(pm)
# Move points
if show_elements is True:
points.set_offsets(np.c_[x[i, range(x.shape[1])],
y[i, range(x.shape[1])]])
points_deactivated.set_offsets(
np.c_[x_deactive[index_of_last_deactivated < i],
y_deactive[index_of_last_deactivated < i]])
if isinstance(markersize, str):
points.set_sizes(markersize_scaling * np.abs(self.history[markersize][:, i]))
#points.set_sizes(markersize_scaling *
# np.abs((self.history[markersize][:, i] / self.history[markersize].compressed()[0])))
if color is not False: # Update colors
points.set_array(colorarray[:, i])
if compare is not None:
for cd in compare_list:
cd['points_other'].set_array(colorarray[:, i])
if isinstance(color, str) or hasattr(color, '__len__'):
points_deactivated.set_array(colorarray_deactivated[
index_of_last_deactivated < i])
if drifter is not None:
for drnum, dr in enumerate(drifter):
drifter_pos[drnum].set_offsets(np.c_[dr['x'][i],
dr['y'][i]])
drifter_line[drnum].set_data(dr['x'][0:i], dr['y'][0:i])
ret.append(drifter_line[drnum])
ret.append(drifter_pos[drnum])
if shapefiles is not None:
import geopandas as gpd
for sf in shapefiles:
shdf = gpd.read_file(sf)
shdf = shdf.to_crs("EPSG:4326")
ax.add_geometries(shdf.geometry, self.crs_lonlat, edgecolor='g', linewidth=2, facecolor='none')
if show_elements is True:
if compare is not None:
for cd in compare_list:
cd['points_other'].set_offsets(
np.c_[cd['x_other'][range(cd['x_other'].shape[0]),
i],
cd['y_other'][range(cd['x_other'].shape[0]),
i]])
cd['points_other_deactivated'].set_offsets(np.c_[
cd['x_other_deactive'][
cd['index_of_last_deactivated_other'] < i],
cd['y_other_deactive'][
cd['index_of_last_deactivated_other'] < i]])
ret.append(cd['points_other'])
ret.append(cd['points_other_deactivated'])
return ret
if surface_only is True:
z = self.get_property('z')[0]
x[z < 0] = np.nan
y[z < 0] = np.nan
if show_trajectories is True:
ax.plot(x, y, color='gray', alpha=trajectory_alpha, transform=self.crs_lonlat, linewidth=linewidth)
if color is not False and show_elements is True:
if isinstance(color, str):
colorarray = self.get_property(color)[0].T
colorarray = colorarray * unitfactor
colorarray_deactivated = \
self.get_property(color)[0][
index_of_last[self.elements_deactivated.ID-1],
self.elements_deactivated.ID-1].T
elif hasattr(color,
'__len__'): # E.g. array/list of ensemble numbers
colorarray_deactivated = color[self.elements_deactivated.ID -
1]
colorarray = np.tile(color, (self.steps_output, 1)).T
else:
colorarray = color
if vmin is None:
vmin = colorarray.min()
vmax = colorarray.max()
if background is not None:
if isinstance(background, xr.DataArray):
map_x = background.coords['lon_bin']
map_y = background.coords['lat_bin']
scalar = background[0, :, :]
map_y, map_x = np.meshgrid(map_y, map_x)
else:
map_x, map_y, scalar, u_component, v_component = \
self.get_map_background(ax, background, self.crs_plot,
time=self.start_time)
bg = ax.pcolormesh(map_x,
map_y,
scalar,
alpha=bgalpha,
zorder=1,
antialiased=True,
linewidth=0.0,
rasterized=True,
vmin=vmin,
vmax=vmax,
cmap=cmap,
transform=self.crs_lonlat)
if type(background) is list:
bg_quiv = ax.quiver(map_x[::skip, ::skip],
map_y[::skip, ::skip],
u_component[::skip, ::skip],
v_component[::skip, ::skip],
scale=scale,
zorder=1,
transform=self.crs_lonlat)
if lcs is not None:
if vmin is None:
vmin = lcs['ALCS'].min()
vmax = lcs['ALCS'].max()
lcsh = ax.pcolormesh(lcs['lon'],
lcs['lat'],
lcs['ALCS'][0, :, :],
vmin=vmin,
vmax=vmax,
cmap=cmap,
transform=self.crs_lonlat)
times = self.get_time_array()[0]
if show_elements is True:
index_of_last_deactivated = \
index_of_last[self.elements_deactivated.ID-1]
if legend is None:
legend = ['']
if color is False:
c = markercolor
else:
c = []
if isinstance(markersize, str):
if markersize_scaling is None:
markersize_scaling = 20
markersize_scaling = markersize_scaling / np.abs(self.history[markersize]).max()
if isinstance(markersize, str):
points = ax.scatter([], [],
c=c,
zorder=10,
edgecolor=[],
cmap=cmap,
alpha=alpha,
vmin=vmin,
vmax=vmax,
label=legend[0],
transform=self.crs_lonlat)
else:
points = ax.scatter([], [],
c=c,
zorder=10,
edgecolor=[],
cmap=cmap,
alpha=alpha,
s=markersize,
vmin=vmin,
vmax=vmax,
label=legend[0],
transform=self.crs_lonlat)
if (compare is None) and (legend != ['']):
markers = []
for legend_index in np.arange(len(legend)):
if legend[legend_index] != '':
markers.append(
matplotlib.lines.Line2D(
[0], [0],
marker='o',
color='w',
linewidth=0,
markeredgewidth=0,
markerfacecolor=cmap(legend_index /
(len(legend) - 1)),
markersize=10,
label=legend[legend_index]))
legend = list(filter(None, legend))
ax.legend(markers, legend, loc=legend_loc)
# Plot deactivated elements, with transparency
if isinstance(markersize, str):
points_deactivated = ax.scatter([], [],
c=c,
zorder=9,
vmin=vmin,
vmax=vmax,
s=markersize_scaling,
cmap=cmap,
edgecolor=[],
alpha=0,
transform=self.crs_lonlat)
else:
points_deactivated = ax.scatter([], [],
c=c,
zorder=9,
vmin=vmin,
vmax=vmax,
s=markersize,
cmap=cmap,
edgecolor=[],
alpha=.3,
transform=self.crs_lonlat)
x_deactive, y_deactive = (self.elements_deactivated.lon,
self.elements_deactivated.lat)
if compare is not None:
for cn, cd in enumerate(compare_list):
if legend != ['']:
legstr = legend[cn + 1]
else:
legstr = None
if color is False:
c = self.plot_comparison_colors[cn + 1]
else:
c = []
cd['points_other'] = \
ax.scatter([], [], c=c, marker=compare_marker, cmap=cmap,
s=markersize, label=legstr, zorder=10, transform = self.crs_lonlat)
# Plot deactivated elements, with transparency
cd['points_other_deactivated'] = \
ax.scatter([], [], alpha=.3, zorder=9, marker=compare_marker, cmap=cmap,
c=c, s=markersize, transform = self.crs_lonlat)
if legend != ['', '']:
plt.legend(markerscale=2, loc=legend_loc)
if density is True:
cmap.set_under('w')
H = np.ma.masked_where(H == 0, H)
lat_array, lon_array = np.meshgrid(lat_array, lon_array)
if vmax is None:
vmax = H.max()
pm = ax.pcolormesh(lon_array,
lat_array,
H[0, :, :],
vmin=0.1,
vmax=vmax,
cmap=cmap,
transform=self.crs_lonlat)
if drifter is not None:
if not isinstance(drifter, list):
drifter = [drifter]
drifter_pos = [None] * len(drifter)
drifter_line = [None] * len(drifter)
for drnum, dr in enumerate(drifter):
# Interpolate drifter time series onto simulation times
sts = np.array(
[t.total_seconds() for t in np.array(times) - times[0]])
dts = np.array([
t.total_seconds() for t in np.array(dr['time']) - times[0]
])
dr['x'] = np.interp(sts, dts, dr['lon'])
dr['y'] = np.interp(sts, dts, dr['lat'])
dr['x'][sts < dts[0]] = np.nan
dr['x'][sts > dts[-1]] = np.nan
dr['y'][sts < dts[0]] = np.nan
dr['y'][sts > dts[-1]] = np.nan
dlabel = dr['label'] if 'label' in dr else 'Drifter'
dcolor = dr['color'] if 'color' in dr else 'r'
dlinewidth = dr['linewidth'] if 'linewidth' in dr else 2
dzorder = dr['zorder'] if 'zorder' in dr else 10
dmarkersize = dr['markersize'] if 'markersize' in dr else 20
drifter_pos[drnum] = ax.scatter([], [],
c=dcolor,
zorder=dzorder + 1,
s=dmarkersize,
label=dlabel,
transform=self.crs_lonlat)
drifter_line[drnum] = ax.plot([], [],
color=dcolor,
linewidth=dlinewidth,
zorder=dzorder,
transform=self.crs_lonlat)[0]
#ax.plot(dr['x'],
# dr['y'],
# color=dcolor,
# linewidth=dlinewidth,
# zorder=dzorder,
# transform=self.crs_lonlat)
plt.legend()
fig.canvas.draw()
fig.set_layout_engine('tight')
if colorbar is True:
if color is not False:
if isinstance(color, str) or clabel is not None:
if clabel is None:
clabel = color
item = points
elif density is not False:
item = pm
if clabel is None:
clabel = 'density'
elif lcs is not None:
item = lcsh
if clabel is None:
clabel = 'LCS'
elif background is not None:
item = bg
if clabel is None:
if isinstance(background, xr.DataArray):
clabel = background.name
else:
clabel = background
cb = fig.colorbar(item,
orientation='horizontal',
pad=.05,
aspect=30,
shrink=.8,
drawedges=False)
cb.set_label(clabel)
frames = x.shape[0] if frames is None else frames
if compare is not None:
frames = min(x.shape[0], cd['x_other'].shape[1])
# blit is now provided to animation()
#blit = sys.platform != 'darwin' # blitting does not work on mac os
self.__save_or_plot_animation__(plt.gcf(),
plot_timestep,
filename,
frames,
fps,
interval=50,
blit=blit)
logger.info('Time to make animation: %s' %
(datetime.now() - start_time))
[docs]
def __save_or_plot_animation__(self, figure, plot_timestep, filename,
frames, fps, interval, blit):
if filename is not None or 'sphinx_gallery' in sys.modules:
logger.debug("Saving animation..")
self.__save_animation__(figure,
plot_timestep,
filename,
frames=frames,
fps=fps,
blit=blit,
interval=interval)
else:
logger.debug("Showing animation..")
anim = animation.FuncAnimation(figure,
plot_timestep,
blit=blit,
frames=frames,
interval=interval)
try:
plt.show()
except AttributeError as e:
logger.exception(e)
pass
[docs]
@require_mode(mode=Mode.Result)
def animation_profile(self,
filename=None,
compare=None,
markersize=20,
markersize_scaling=None,
alpha=1,
fps=20,
color=None,
cmap=None,
vmin=None,
vmax=None,
legend=None,
legend_loc=None):
"""Animate vertical profile of the last run."""
start_time = datetime.now()
def plot_timestep(i):
"""Sub function needed for matplotlib animation."""
ax.set_title('%s UTC' % times[i])
points.set_offsets(np.c_[x[range(x.shape[0]), i], z[range(x.shape[0]), i]])
if color is not None and compare is None:
points.set_array(colorarray[:, i])
points_deactivated.set_offsets(np.c_[
x_deactive[index_of_last_deactivated < i],
z_deactive[index_of_last_deactivated < i]])
if isinstance(markersize, str):
points.set_sizes(np.abs(markersize_scaling * self.history[markersize][:, i]))
#points.set_sizes(np.abs(markersize_scaling *
# (self.history[markersize][:, i] / self.history[markersize].compressed()[0])))
if compare is not None:
points_other.set_offsets(np.c_[x_other[range(x_other.shape[0]), i],
z_other[range(x_other.shape[0]), i]])
points_other_deactivated.set_offsets(np.c_[
x_other_deactive[index_of_last_deactivated_other < i],
z_other_deactive[index_of_last_deactivated_other < i]])
return points, points_deactivated, points_other,
else:
return points, points_deactivated,
if cmap is None:
cmap = 'jet'
if isinstance(cmap, str):
cmap = matplotlib.colormaps[cmap]
if color is not False:
if isinstance(color, str):
colorarray = self.get_property(color)[0].T
if vmin is None:
vmin = colorarray.min()
vmax = colorarray.max()
markercolor = self.plot_comparison_colors[0]
if color is None:
c = markercolor
else:
c = []
# Set up plot
index_of_first, index_of_last = \
self.index_of_activation_and_deactivation()
z = self.get_property('z')[0].T
x = self.get_property('lon')[0].T
#seafloor_depth = \
# -self.get_property('sea_floor_depth_below_sea_level')[0].T
fig = plt.figure(figsize=(10, 6.)) # Suitable aspect ratio
ax = fig.gca()
plt.xlabel('Longitude [degrees]')
plt.ylabel('Depth [m]')
times = self.get_time_array()[0]
index_of_last_deactivated = \
index_of_last[self.elements_deactivated.ID-1]
if legend is None:
if compare is None:
legs = ['', '']
else:
legs = legend
if isinstance(markersize, str):
ms = None
else:
ms = markersize
if isinstance(markersize, str):
if markersize_scaling is None:
markersize_scaling = 20
markersize_scaling = markersize_scaling / np.abs(self.history[markersize]).max()
points = ax.scatter([], [],
c=c,
zorder=10,
edgecolor=[],
alpha=alpha,
cmap=cmap,
s=ms,
label=legs[0],
vmin=vmin,
vmax=vmax)
markers = []
if compare is None and legend is not None: # Empty points to get legend
for legend_index in np.arange(len(legend)):
if legend[legend_index] != '':
markers.append(
matplotlib.lines.Line2D(
[0], [0], marker='o', linewidth=0, markeredgewidth=0,
markerfacecolor=cmap(legend_index /
(len(legend) - 1)),
markersize=10,
label=legend[legend_index]))
legend = list(filter(None, legend))
leg = ax.legend(markers, legend, loc=legend_loc)
leg.set_zorder(20)
# Plot deactivated elements, with transparency
points_deactivated = ax.scatter([], [], c=[], zorder=10, edgecolor=[],
cmap=cmap, s=ms, vmin=vmin, vmax=vmax)
x_deactive = self.elements_deactivated.lon
z_deactive = self.elements_deactivated.z
if compare is not None:
if type(compare) is str:
# Other is given as filename
other = self.__class__()
other.io_import_file(compare)
else:
# Other is given as an OpenDrift object
other = compare
z_other = other.get_property('z')[0].T
x_other = self.get_property('lon')[0].T
points_other = ax.scatter([], [],
c='r',
zorder=10,
alpha=alpha,
edgecolor=[],
cmap=cmap,
s=markersize,
label=legs[1],
vmin=vmin,
vmax=vmax)
# Plot deactivated elements, with transparency
points_other_deactivated = ax.scatter([], [], c='r', cmap=cmap, s=markersize, alpha=.3)
x_other_deactive = other.elements_deactivated.lon
z_other_deactive = other.elements_deactivated.z
firstlast = np.ma.notmasked_edges(x_other, axis=1)
index_of_last_other = firstlast[1][1]
index_of_last_deactivated_other = \
index_of_last_other[other.elements_deactivated.ID-1]
xmax = np.maximum(x.max(), x_other.max())
xmin = np.minimum(x.min(), x_other.min())
zmax = np.maximum(z.max(), z_other.max())
zmin = np.minimum(z.min(), z_other.min())
else:
xmin = x.min()
xmax = x.max()
zmin = z.min()
zmax = z.max()
# Set figure limits
sky = (zmax - zmin) * .1 # Sky height is 10% of water depth
plt.xlim([xmin, xmax])
plt.ylim([zmin, sky])
ax.add_patch(
plt.Rectangle((xmin, 0), xmax - xmin, sky, color='lightsteelblue'))
ax.add_patch(
plt.Rectangle((xmin, zmin),
xmax - xmin,
-zmin,
color='cornflowerblue'))
if legend is not None and compare is not None:
plt.legend(loc=4)
self.__save_or_plot_animation__(plt.gcf(),
plot_timestep,
filename,
x.shape[1],
fps,
interval=150,
blit=False)
logger.info('Time to make animation: %s' %
(datetime.now() - start_time))
[docs]
def _get_comparison_xy_for_plots(self, compare):
if not type(compare) is list:
compare = [compare]
compare_list = [{}] * len(compare)
lonmin = 1000
lonmax = -1000
latmin = 1000
latmax = -1000
for cn, comp in enumerate(compare):
compare_list[cn] = {}
cd = compare_list[cn] # pointer to dict with data
if type(comp) is str:
# Other is given as filename
other = self.__class__()
other.io_import_file(comp)
else:
# Other is given as an OpenDrift object
other = comp
lonmin = np.minimum(lonmin, np.nanmin(other.history['lon']))
lonmax = np.maximum(lonmax, np.nanmax(other.history['lon']))
latmin = np.minimum(latmin, np.nanmin(other.history['lat']))
latmax = np.maximum(latmax, np.nanmax(other.history['lat']))
# Find map coordinates of comparison simulations
cd['x_other'], cd['y_other'] = \
(other.history['lon'].copy(), other.history['lat'].copy())
cd['x_other_deactive'], cd['y_other_deactive'] = \
(other.elements_deactivated.lon.copy(),
other.elements_deactivated.lat.copy())
cd['firstlast'] = np.ma.notmasked_edges(cd['x_other'], axis=1)
cd['index_of_last_other'] = cd['firstlast'][1][1]
cd['index_of_last_deactivated_other'] = \
cd['index_of_last_other'][other.elements_deactivated.ID-1]
compare_args = {
'compare_lonmin': lonmin,
'compare_lonmax': lonmax,
'compare_latmin': latmin,
'compare_latmax': latmax
}
return compare_list, compare_args
[docs]
def plot(self,
background=None,
buffer=.2,
corners=None,
linecolor=None,
filename=None,
show=True,
vmin=None,
vmax=None,
compare=None,
cmap='jet',
lvmin=None,
lvmax=None,
skip=None,
scale=None,
show_scalar=True,
contourlines=False,
drifter=None,
colorbar=True,
linewidth=1,
lcs=None,
show_elements=True,
show_trajectories=True,
show_initial=True,
density_pixelsize_m=1000,
lalpha=None,
bgalpha=1,
clabel=None,
cpad=.05,
caspect=30,
cshrink=.8,
surface_color=None,
submerged_color=None,
markersize=20,
title='auto',
legend=True,
legend_loc='best',
lscale=None,
fast=False,
hide_landmask=False,
xlocs = None,
ylocs = None,
**kwargs):
"""Basic built-in plotting function intended for developing/debugging.
Plots trajectories of all particles.
Positions marked with colored stars:
- green: all start positions
- red: deactivated particles
- blue: particles still active at end of simulation
Requires availability of Cartopy.
Arguments:
background: string, name of variable (standard_name) which will
be plotted as background of trajectories, provided that it
can be read with one of the available readers.
buffer: float; spatial buffer of plot in degrees of
longitude/latitude around particle collection.
background: name of variable to be plotted as background field.
Use two element list for vector fields, e.g. ['x_wind', 'y_wind']
vmin, vmax: minimum and maximum values for colors of background.
linecolor: name of variable to be used for coloring trajectories, or matplotlib color string.
lvmin, lvmax: minimum and maximum values for colors of trajectories.
lscale (string): resolution of land feature ('c', 'l', 'i', 'h', 'f', 'auto'). default is 'auto'.
fast (bool): use some optimizations to speed up plotting at the cost of accuracy
:param hide_landmask: do not plot landmask (default False).
:type hide_landmask: bool
"""
mappable = None
if self.history is not None and self.num_elements_total(
) == 0 and not hasattr(self, 'ds'):
raise ValueError('Please run simulation before animating')
start_time = datetime.now()
if compare is not None:
# Extend map coverage to cover comparison simulations
cd, compare_args = self._get_comparison_xy_for_plots(compare)
kwargs.update(compare_args)
if drifter is not None:
# Extend map coverage to cover provided trajectory
# TODO: drifter should be list of dictionaries
ttime = np.array(drifter['time'])
i = np.where((ttime >= self.start_time) & (ttime <= self.time))[0]
drifter['lon'] = np.atleast_1d(drifter['lon'])
drifter['lat'] = np.atleast_1d(drifter['lat'])
tlonmin = drifter['lon'][i].min()
tlonmax = drifter['lon'][i].max()
tlatmin = drifter['lat'][i].min()
tlatmax = drifter['lat'][i].max()
if 'compare_lonmin' not in kwargs:
kwargs['compare_lonmin'] = tlonmin
kwargs['compare_lonmax'] = tlonmax
kwargs['compare_latmin'] = tlatmin
kwargs['compare_latmax'] = tlatmax
else:
kwargs['compare_lonmin'] = np.minimum(kwargs['compare_lonmin'],
tlonmin)
kwargs['compare_lonmax'] = np.maximum(kwargs['compare_lonmax'],
tlonmax)
kwargs['compare_latmin'] = np.minimum(kwargs['compare_latmin'],
tlatmin)
kwargs['compare_latmax'] = np.maximum(kwargs['compare_latmax'],
tlatmax)
fig, ax, crs, x, y, index_of_first, index_of_last = \
self.set_up_map(buffer=buffer, corners=corners, lscale=lscale, fast=fast, hide_landmask=hide_landmask, xlocs = xlocs, ylocs = ylocs, **kwargs)
markercolor = self.plot_comparison_colors[0]
# The more elements, the more transparent we make the lines
if lalpha is None:
min_alpha = 0.1
max_elements = 5000.0
alpha = min_alpha**(2 * (self.num_elements_total() - 1) /
(max_elements - 1))
alpha = np.max((min_alpha, alpha))
else:
alpha = lalpha # provided transparency of trajectories
if legend is False:
legend = None
if self.history is not None and linewidth != 0 and show_trajectories is True:
# Plot trajectories
from matplotlib.colors import is_color_like
if linecolor is None or is_color_like(linecolor) is True:
if is_color_like(linecolor):
linecolor = linecolor
else:
linecolor = 'gray'
if compare is not None and legend is not None:
if legend is True:
if hasattr(compare, 'len'):
numleg = len(compare)
else:
numleg = 2
legend = [
'Simulation %d' % (i + 1) for i in range(numleg)
]
ax.plot(x[:, 0],
y[:, 0],
color=linecolor,
alpha=alpha,
label=legend[0],
linewidth=linewidth,
transform=self.crs_lonlat)
ax.plot(x,
y,
color=linecolor,
alpha=alpha,
label='_nolegend_',
linewidth=linewidth,
transform=self.crs_lonlat)
else:
ax.plot(x,
y,
color=linecolor,
alpha=alpha,
linewidth=linewidth,
transform=self.crs_lonlat)
else:
#colorbar = True
# Color lines according to given parameter
try:
if isinstance(linecolor, str):
param = self.history[linecolor]
elif hasattr(linecolor, '__len__'):
param = np.tile(linecolor, (self.steps_output, 1)).T
else:
param = linecolor
except:
raise ValueError(
'Available parameters to be used for linecolors: ' +
str(self.history.dtype.fields))
from matplotlib.collections import LineCollection
for i in range(x.shape[1]):
vind = np.arange(index_of_first[i], index_of_last[i] + 1)
points = np.array([x[vind, i].T,
y[vind, i].T]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]],
axis=1)
if lvmin is None:
lvmin = param.min()
lvmax = param.max()
lc = LineCollection(
segments,
#cmap=plt.colormaps['Spectral'],
cmap=cmap,
norm=plt.Normalize(lvmin, lvmax),
transform=self.crs_lonlat)
#lc.set_linewidth(3)
lc.set_array(param.T[vind, i])
mappable = ax.add_collection(lc)
#axcb = fig.colorbar(lc, ax = ax, orientation = 'horizontal')
#try: # Add unit to colorbar if available
# colorbarstring = linecolor + ' [%s]' % \
# (self.history_metadata[linecolor]['units'])
#except:
# colorbarstring = linecolor
##axcb.set_label(colorbarstring)
#axcb.set_label(colorbarstring, size=14)
#axcb.ax.tick_params(labelsize=14)
if compare is None:
label_initial = 'initial (%i)' % x.shape[1]
label_active = 'active (%i)' % (x.shape[1] -
self.num_elements_deactivated())
color_initial = self.status_colors['initial']
color_active = self.status_colors['active']
else:
label_initial = None
label_active = None
color_initial = 'gray'
color_active = 'gray'
if show_elements is True:
if show_initial is True:
ax.scatter(x[index_of_first, range(x.shape[1])],
y[index_of_first, range(x.shape[1])],
s=markersize,
zorder=10,
edgecolor=markercolor,
linewidths=.2,
c=color_initial,
label=label_initial,
transform=self.crs_lonlat)
if surface_color is not None:
color_active = surface_color
label_active = 'surface'
ax.scatter(x[index_of_last, range(x.shape[1])],
y[index_of_last, range(x.shape[1])],
s=markersize,
zorder=3,
edgecolor=markercolor,
linewidths=.2,
c=color_active,
label=label_active,
transform=self.crs_lonlat)
#if submerged_color is not None:
# map.scatter(x[range(x.shape[0]), index_of_last],
# y[range(x.shape[0]), index_of_last], s=markersize,
# zorder=3, edgecolor=markercolor, linewidths=.2,
# c=submerged_color, label='submerged')
x_deactivated, y_deactivated = (self.elements_deactivated.lon,
self.elements_deactivated.lat)
# Plot deactivated elements, labeled by deactivation reason
for statusnum, status in enumerate(self.status_categories):
if status == 'active':
continue # plotted above
if status not in self.status_colors:
# If no color specified, pick an unused one
for color in [
'red', 'blue', 'green', 'black', 'gray', 'cyan',
'DarkSeaGreen', 'brown'
]:
if color not in self.status_colors.values():
self.status_colors[status] = color
break
indices = np.where(
self.elements_deactivated.status == statusnum)
if len(indices[0]) > 0:
if (status == 'seeded_on_land'
or status == 'seeded_at_nodata_position'):
zorder = 11
else:
zorder = 3
if compare is not None:
legstr = None
else:
legstr = '%s (%i)' % (status, len(indices[0]))
if compare is None:
color_status = self.status_colors[status]
else:
color_status = 'gray'
ax.scatter(x_deactivated[indices],
y_deactivated[indices],
s=markersize,
zorder=zorder,
edgecolor=markercolor,
linewidths=.1,
c=color_status,
label=legstr,
transform=self.crs_lonlat)
if compare is not None:
for i, c in enumerate(cd):
if legend != None:
legstr = legend[i + 1]
else:
legstr = None
ax.plot(c['x_other'].T[:, 0],
c['y_other'].T[:, 0],
color=self.plot_comparison_colors[i + 1],
linestyle='-',
label=legstr,
linewidth=linewidth,
transform=self.crs_lonlat)
ax.plot(c['x_other'].T,
c['y_other'].T,
color=self.plot_comparison_colors[i + 1],
linestyle='-',
label='_nolegend_',
linewidth=linewidth,
transform=self.crs_lonlat)
ax.scatter(c['x_other'][range(c['x_other'].shape[0]),
c['index_of_last_other']],
c['y_other'][range(c['y_other'].shape[0]),
c['index_of_last_other']],
s=markersize,
zorder=3,
edgecolor=markercolor,
linewidths=.2,
c=self.plot_comparison_colors[i + 1],
transform=self.crs_lonlat)
if background is not None:
if hasattr(self, 'time'):
time = self.time - self.time_step_output
else:
time = None
if isinstance(background, xr.DataArray):
map_x = background.coords['lon_bin']
map_y = background.coords['lat_bin']
scalar = background
map_y, map_x = np.meshgrid(map_y, map_x)
elif background == 'residence':
scalar, lon_res, lat_res = self.get_residence_time(
pixelsize_m=density_pixelsize_m)
scalar[scalar == 0] = np.nan
lon_res, lat_res = np.meshgrid(lon_res[0:-1], lat_res[0:-1])
lon_res = lon_res.T
lat_res = lat_res.T
map_x, map_y = (lon_res, lat_res)
else:
map_x, map_y, scalar, u_component, v_component = \
self.get_map_background(ax, background, crs, time=time)
#self.time_step_output)
if show_scalar is True:
if contourlines is False:
scalar = np.ma.masked_invalid(scalar)
mappable = ax.pcolormesh(map_x,
map_y,
scalar,
alpha=bgalpha,
zorder=1,
vmin=vmin,
vmax=vmax,
cmap=cmap,
transform=self.crs_lonlat)
else:
if contourlines is True:
CS = ax.contour(map_x,
map_y,
scalar,
colors='gray',
transform=self.crs_lonlat)
else:
# contourlines is an array of values
CS = ax.contour(map_x,
map_y,
scalar,
contourlines,
colors='gray',
transform=self.crs_lonlat)
plt.clabel(CS, fmt='%g')
if mappable is not None and colorbar is True:
cb = fig.colorbar(mappable,
orientation='horizontal',
pad=cpad,
aspect=caspect,
shrink=cshrink,
drawedges=False)
# TODO: need better control of colorbar content
if clabel is not None:
cb.set_label(clabel)
elif isinstance(linecolor, str) and linecolor != 'gray':
cb.set_label(str(linecolor))
if background is not None and clabel is None:
if isinstance(background, xr.DataArray):
cb.set_label(background.name)
else:
cb.set_label(str(background))
if type(background) is list:
ax.quiver(map_x[::skip, ::skip],
map_y[::skip, ::skip],
u_component[::skip, ::skip],
v_component[::skip, ::skip],
scale=scale,
transform=self.crs_lonlat,
zorder=1)
if lcs is not None:
map_x_lcs, map_y_lcs = (lcs['lon'], lcs['lat'])
ax.pcolormesh(map_x_lcs,
map_y_lcs,
lcs['ALCS'][0, :, :],
alpha=1,
vmin=vmin,
vmax=vmax,
zorder=0,
cmap=cmap,
transform=self.crs_lonlat)
if title is not None:
if title == 'auto':
if hasattr(self, 'time'):
plt.title('%s\n%s to %s UTC (%i steps)' %
(self._figure_title(),
self.start_time.strftime('%Y-%m-%d %H:%M'),
self.time.strftime('%Y-%m-%d %H:%M'),
self.steps_output))
else:
plt.title(
'%s\n%i elements seeded at %s UTC' %
(self._figure_title(), self.num_elements_scheduled(),
self.elements_scheduled_time[0].strftime(
'%Y-%m-%d %H:%M')))
else:
plt.title(title)
if drifter is not None:
self._plot_drifter(ax, self.crs_lonlat, drifter)
try:
handles, labels = ax.get_legend_handles_labels()
if legend is not None and len(handles) > 0:
plt.legend(loc=legend_loc, markerscale=2)
except Exception as e:
logger.warning('Cannot plot legend, due to bug in matplotlib:')
logger.warning(traceback.format_exc())
#plt.gca().tick_params(labelsize=14)
#fig.canvas.draw()
if filename is not None:
plt.savefig(filename)
logger.info('Time to make plot: ' +
str(datetime.now() - start_time))
else:
if show is True:
plt.show()
return ax, fig
[docs]
def _substance_name(self):
return None
[docs]
def _plot_drifter(self, ax, gcrs, drifter):
'''Plot provided trajectory along with simulated'''
time = drifter['time']
time = np.array(time)
i = np.where((time >= self.start_time) & (time <= self.time))[0]
x, y = (np.atleast_1d(drifter['lon'])[i],
np.atleast_1d(drifter['lat'])[i])
dlabel = drifter['label'] if 'label' in drifter else 'Drifter'
dcolor = drifter['color'] if 'color' in drifter else 'r'
dlinewidth = drifter['linewidth'] if 'linewidth' in drifter else 2
dzorder = drifter['zorder'] if 'zorder' in drifter else 10
ax.plot(x,
y,
linewidth=dlinewidth,
color=dcolor,
transform=self.crs_lonlat,
label=dlabel,
zorder=dzorder)
ax.plot(x[0], y[0], 'ok', transform=self.crs_lonlat)
ax.plot(x[-1], y[-1], 'xk', transform=self.crs_lonlat)
[docs]
def get_map_background(self, ax, background, crs, time=None):
# Get background field for plotting on map or animation
# TODO: this method should be made more robust
if type(background) is list:
variable = background[0] # A vector is requested
else:
variable = background # A scalar is requested
for readerName in self.env.readers:
reader = self.env.readers[readerName]
if variable in reader.variables:
if time is None or reader.start_time is None or (
time >= reader.start_time
and time <= reader.end_time) or (reader.always_valid
is True):
break
if time is None:
if hasattr(self, 'elements_scheduled_time'):
# Using time of first seeded element
time = self.elements_scheduled_time[0]
# Get reader coordinates covering given map area
axisproj = pyproj.Proj(ax.projection.proj4_params)
xmin, xmax, ymin, ymax = ax.get_extent(self.crs_lonlat)
cornerlons = np.array([xmin, xmin, xmax, xmax])
cornerlats = np.array([ymin, ymax, ymin, ymax])
reader_x, reader_y = reader.lonlat2xy(cornerlons, cornerlats)
if sum(~np.isfinite(reader_x + reader_y)) > 0:
# Axis corner points are not within reader domain
reader_x = np.array([reader.xmin, reader.xmax])
reader_y = np.array([reader.ymin, reader.ymax])
else:
reader_x = np.linspace(reader_x.min(), reader_x.max(), 10)
reader_y = np.linspace(reader_y.min(), reader_y.max(), 10)
data = reader.get_variables(background, time, reader_x, reader_y, None)
reader_x, reader_y = np.meshgrid(data['x'], data['y'])
if type(background) is list: # Ensemble reader, using first member
u_component = data[background[0]]
v_component = data[background[1]]
if isinstance(u_component, list):
u_component = u_component[0]
v_component = v_component[0]
with np.errstate(invalid='ignore'):
scalar = np.sqrt(u_component**2 + v_component**2)
# NB: rotation not completed!
u_component, v_component = reader.rotate_vectors(
reader_x, reader_y, u_component, v_component, reader.proj,
ccrs.PlateCarree(globe=ccrs.Globe(datum='WGS84',
ellipse='WGS84')).proj4_init)
else:
scalar = data[background]
if isinstance(scalar, list): # Ensemble reader, using first member
scalar = scalar[0]
u_component = v_component = None
if reader.projected is False:
reader_y[reader_y < 0] = 0
reader_x[reader_x < 0] = 0
rlons, rlats = reader.xy2lonlat(reader_x, reader_y)
if rlons.max() > 360:
rlons = rlons - 360
map_x, map_y = (rlons, rlats)
scalar = np.ma.masked_invalid(scalar)
return map_x, map_y, scalar, u_component, v_component
[docs]
def get_lonlat_bins(self, pixelsize_m):
latmin = self.latmin
latmax = self.latmax
lonmin = self.lonmin
lonmax = self.lonmax
deltalat = pixelsize_m / 111000.0 # m to degrees
deltalon = deltalat / np.cos(np.radians((latmin + latmax) / 2))
latbin = np.arange(latmin - deltalat, latmax + deltalat, deltalat)
lonbin = np.arange(lonmin - deltalon, lonmax + deltalon, deltalon)
return lonbin, latbin
[docs]
def get_histogram(self, pixelsize_m, **kwargs):
from xhistogram.xarray import histogram
lonbin, latbin = self.get_lonlat_bins(pixelsize_m)
max_om = int(self.ds.origin_marker.max().compute().values)
origin_marker = range(max_om + 1)
if 'weights' in kwargs and kwargs['weights'] is not None and kwargs[
'weights'].ndim < 2:
kwargs['weights'] = xr.DataArray(
kwargs['weights'],
dims=['trajectory'],
coords={'trajectory': self.ds.coords['trajectory']})
# Xarray Dataset to store histogram per origin_marker
h_om = xr.DataArray(np.zeros(
(len(self.ds.coords['time']), len(lonbin) - 1, len(latbin) - 1,
max_om + 1)),
name='density_origin_marker',
dims=('time', 'lon_bin', 'lat_bin',
'origin_marker'))
h_om.coords['time'] = self.ds.coords['time']
h_om.coords['origin_marker'] = origin_marker
for om in origin_marker:
logger.info('\tcalculating for origin_marker %s...' % om)
h = histogram(self.ds.lon.where(self.ds.origin_marker == om),
self.ds.lat.where(self.ds.origin_marker == om),
bins=[lonbin, latbin],
dim=['trajectory'],
**kwargs)
if om == 0:
h_om.coords['lon_bin'] = h.coords['lon_bin']
h_om.coords['lat_bin'] = h.coords['lat_bin']
h_om[:, :, :, om] = h #.copy()
return h_om
[docs]
def get_density_array(self, pixelsize_m, weight=None):
lon = self.get_property('lon')[0]
lat = self.get_property('lat')[0]
times = self.get_time_array()[0]
deltalat = pixelsize_m / 111000.0 # m to degrees
deltalon = deltalat / np.cos(
np.radians((np.nanmin(lat) + np.nanmax(lat)) / 2))
lat_array = np.arange(
np.nanmin(lat) - deltalat,
np.nanmax(lat) + deltalat, deltalat)
lon_array = np.arange(
np.nanmin(lon) - deltalat,
np.nanmax(lon) + deltalon, deltalon)
bins = (lon_array, lat_array)
z = self.get_property('z')[0]
if weight is not None:
weight_array = self.get_property(weight)[0]
status = self.get_property('status')[0]
lon_submerged = lon.copy()
lat_submerged = lat.copy()
lon_stranded = lon.copy()
lat_stranded = lat.copy()
lon_submerged[z >= 0] = 1000
lat_submerged[z >= 0] = 1000
lon[z < 0] = 1000
lat[z < 0] = 1000
H = np.zeros((len(times), len(lon_array) - 1,
len(lat_array) - 1)) #.astype(int)
H_submerged = H.copy()
H_stranded = H.copy()
try:
strandnum = self.status_categories.index('stranded')
lon_stranded[status != strandnum] = 1000
lat_stranded[status != strandnum] = 1000
contains_stranded = True
except ValueError:
contains_stranded = False
for i in range(len(times)):
if weight is not None:
weights = weight_array[i, :]
else:
weights = None
H[i,:,:], dummy, dummy = \
np.histogram2d(lon[i,:], lat[i,:],
weights=weights, bins=bins)
H_submerged[i,:,:], dummy, dummy = \
np.histogram2d(lon_submerged[i,:], lat_submerged[i,:],
weights=weights, bins=bins)
if contains_stranded is True:
H_stranded[i,:,:], dummy, dummy = \
np.histogram2d(lon_stranded[i,:], lat_stranded[i,:],
weights=weights, bins=bins)
return H, H_submerged, H_stranded, lon_array, lat_array
[docs]
def get_density_array_proj(self,
pixelsize_m,
density_proj=None,
llcrnrlon=None,
llcrnrlat=None,
urcrnrlon=None,
urcrnrlat=None,
weight=None):
#
# TODO: should be merged with get_density_array
# KFD Jan 2021
#
lon = self.get_property('lon')[0]
lat = self.get_property('lat')[0]
times = self.get_time_array()[0]
#deltalat = pixelsize_m/111000.0 # m to degrees
#deltalon = deltalat/np.cos(np.radians((np.nanmin(lat) +
# np.nanmax(lat))/2))
#lat_array = np.arange(np.nanmin(lat)-deltalat,
# np.nanmax(lat)+deltalat, deltalat)
#lon_array = np.arange(np.nanmin(lon)-deltalat,
# np.nanmax(lon)+deltalon, deltalon)
#bins=(lon_array, lat_array)
if density_proj is None: # add default projection with equal-area property
density_proj = pyproj.Proj('+proj=moll +ellps=WGS84 +lon_0=0.0')
density_proj = pyproj.Proj('+proj=longlat +a=6371229 +no_defs')
# create a grid in the specified projection
x, y = density_proj(lon, lat)
if llcrnrlon is not None:
llcrnrx, llcrnry = density_proj(llcrnrlon, llcrnrlat)
urcrnrx, urcrnry = density_proj(urcrnrlon, urcrnrlat)
else:
llcrnrx, llcrnry = x.min() - pixelsize_m, y.min() - pixelsize_m
urcrnrx, urcrnry = x.max() + pixelsize_m, y.max() + pixelsize_m
x_array = np.arange(llcrnrx, urcrnrx, pixelsize_m)
y_array = np.arange(llcrnry, urcrnry, pixelsize_m)
bins = (x_array, y_array)
outsidex, outsidey = max(x_array) * 1.5, max(y_array) * 1.5
z = self.get_property('z')[0]
if weight is not None:
weight_array = self.get_property(weight)[0]
status = self.get_property('status')[0]
#lon_submerged = lon.copy()
#lat_submerged = lat.copy()
#lon_stranded = lon.copy()
#lat_stranded = lat.copy()
#lon_submerged[z>=0] = 1000
#lat_submerged[z>=0] = 1000
#lon[z<0] = 1000
#lat[z<0] = 1000
#H = np.zeros((len(times), len(lon_array) - 1,
# len(lat_array) - 1))#.astype(int)
x_submerged = x.copy()
y_submerged = y.copy()
x_stranded = x.copy()
y_stranded = y.copy()
x_submerged[z >= 0] = outsidex
y_submerged[z >= 0] = outsidey
x[z < 0] = outsidex
y[z < 0] = outsidey
H = np.zeros(
(len(times), len(x_array) - 1, len(y_array) - 1)) #.astype(int)
H_submerged = H.copy()
H_stranded = H.copy()
try:
strandnum = self.status_categories.index('stranded')
#lon_stranded[status!=strandnum] = 1000
#lat_stranded[status!=strandnum] = 1000
x_stranded[status != strandnum] = outsidex
y_stranded[status != strandnum] = outsidey
contains_stranded = True
except ValueError:
contains_stranded = False
for i in range(len(times)):
if weight is not None:
weights = weight_array[i, :]
else:
weights = None
H[i,:,:], dummy, dummy = \
np.histogram2d(x[i,:], y[i,:],
weights=weights, bins=bins)
H_submerged[i,:,:], dummy, dummy = \
np.histogram2d(x_submerged[i,:], y_submerged[i,:],
weights=weights, bins=bins)
if contains_stranded is True:
H_stranded[i,:,:], dummy, dummy = \
np.histogram2d(x_stranded[i,:], y_stranded[i,:],
weights=weights, bins=bins)
if density_proj is not None:
Y, X = np.meshgrid(y_array, x_array)
lon_array, lat_array = density_proj(X, Y, inverse=True)
return H, H_submerged, H_stranded, lon_array, lat_array
[docs]
def get_residence_time(self, pixelsize_m):
H,H_sub, H_str,lon_array,lat_array = \
self.get_density_array(pixelsize_m)
residence = np.sum(H, axis=0)
return residence, lon_array, lat_array
[docs]
def write_netcdf_density_map(self, filename, pixelsize_m='auto'):
'''Write netCDF file with map of particles densities'''
if pixelsize_m == 'auto':
lon, lat = self.get_lonlats()
latspan = lat.max() - lat.min()
pixelsize_m = 30
if latspan > .05:
pixelsize_m = 50
if latspan > .1:
pixelsize_m = 300
if latspan > .3:
pixelsize_m = 500
if latspan > .7:
pixelsize_m = 1000
if latspan > 2:
pixelsize_m = 2000
if latspan > 5:
pixelsize_m = 4000
H, H_submerged, H_stranded, lon_array, lat_array = \
self.get_density_array(pixelsize_m)
lon_array = (lon_array[0:-1] + lon_array[1::]) / 2
lat_array = (lat_array[0:-1] + lat_array[1::]) / 2
from netCDF4 import Dataset, date2num
nc = Dataset(filename, 'w')
nc.createDimension('lon', len(lon_array))
nc.createDimension('lat', len(lat_array))
nc.createDimension('time', H.shape[0])
times = self.get_time_array()[0]
if times[1] < times[0]: # Revert for backward runs so that time is increasing
times = times[::-1]
H = np.flip(H, axis=0)
H_submerged = np.flip(H_submerged, axis=0)
H_stranded = np.flip(H_stranded, axis=0)
timestr = 'seconds since 1970-01-01 00:00:00'
nc.createVariable('time', 'f8', ('time', ))
nc.variables['time'][:] = date2num(times, timestr)
nc.variables['time'].units = timestr
nc.variables['time'].standard_name = 'time'
# Projection
nc.createVariable('projection_lonlat', 'i8')
nc.variables['projection_lonlat'].grid_mapping_name = \
'latitude_longitude'
nc.variables['projection_lonlat'].earth_radius = 6371229.
nc.variables['projection_lonlat'].proj4 = \
'+proj=longlat +a=6371229 +no_defs'
# Coordinates
nc.createVariable('lon', 'f8', ('lon', ))
nc.createVariable('lat', 'f8', ('lat', ))
nc.variables['lon'][:] = lon_array
nc.variables['lon'].long_name = 'longitude'
nc.variables['lon'].short_name = 'longitude'
nc.variables['lon'].units = 'degrees_east'
nc.variables['lat'][:] = lat_array
nc.variables['lat'].long_name = 'latitude'
nc.variables['lat'].short_name = 'latitude'
nc.variables['lat'].units = 'degrees_north'
# Density
nc.createVariable('density_surface', 'u1', ('time', 'lat', 'lon'))
H = np.swapaxes(H, 1, 2).astype('uint8')
H = np.ma.masked_where(H == 0, H)
nc.variables['density_surface'][:] = H
nc.variables['density_surface'].long_name = 'Detection probability'
nc.variables['density_surface'].grid_mapping = 'projection_lonlat'
nc.variables['density_surface'].units = '1'
# Density submerged
nc.createVariable('density_submerged', 'u1', ('time', 'lat', 'lon'))
H_sub = np.swapaxes(H_submerged, 1, 2).astype('uint8')
H_sub = np.ma.masked_where(H_sub == 0, H_sub)
nc.variables['density_submerged'][:] = H_sub
nc.variables[
'density_submerged'].long_name = 'Detection probability submerged'
nc.variables['density_submerged'].grid_mapping = 'projection_lonlat'
nc.variables['density_submerged'].units = '1'
# Density stranded
nc.createVariable('density_stranded', 'u1', ('time', 'lat', 'lon'))
H_stranded = np.swapaxes(H_stranded, 1, 2).astype('uint8')
H_stranded = np.ma.masked_where(H_stranded == 0, H_stranded)
nc.variables['density_stranded'][:] = H_stranded
nc.variables[
'density_stranded'].long_name = 'Detection probability stranded'
nc.variables['density_stranded'].grid_mapping = 'projection_lonlat'
nc.variables['density_stranded'].units = '1'
nc.close()
[docs]
def write_netcdf_density_map_proj(self,
filename,
pixelsize_m='auto',
density_proj=None,
llcrnrlon=None,
llcrnrlat=None,
urcrnrlon=None,
urcrnrlat=None):
'''Write netCDF file with map of particles densities for a given projection or area'''
#
# TODO: should be merged with write_netcdf_density_map_proj
# KFD Jan 2021
#
if pixelsize_m == 'auto':
lon, lat = self.get_lonlats()
latspan = lat.max() - lat.min()
pixelsize_m = 30
if latspan > .05:
pixelsize_m = 50
if latspan > .1:
pixelsize_m = 300
if latspan > .3:
pixelsize_m = 500
if latspan > .7:
pixelsize_m = 1000
if latspan > 2:
pixelsize_m = 2000
if latspan > 5:
pixelsize_m = 4000
if density_proj is None: # add default projection with equal-area property
density_proj = pyproj.Proj('+proj=moll +ellps=WGS84 +lon_0=0.0')
H, H_submerged, H_stranded, lon_array, lat_array = \
self.get_density_array_proj(pixelsize_m=pixelsize_m,
density_proj=density_proj,
llcrnrlon=llcrnrlon, llcrnrlat=llcrnrlat,
urcrnrlon=urcrnrlon, urcrnrlat=urcrnrlat)
# calculate center coordinates
print(lon_array.shape, lat_array.shape)
lon_array = (lon_array[:-1, :-1] + lon_array[1:, 1:]) / 2.
lat_array = (lat_array[:-1, :-1] + lat_array[1:, 1:]) / 2.
from netCDF4 import Dataset, date2num
nc = Dataset(filename, 'w')
nc.createDimension('x', lon_array.shape[0])
nc.createDimension('y', lon_array.shape[1])
nc.createDimension('time', H.shape[0])
times = self.get_time_array()[0]
timestr = 'seconds since 1970-01-01 00:00:00'
nc.createVariable('time', 'f8', ('time', ))
nc.variables['time'][:] = date2num(times, timestr)
nc.variables['time'].units = timestr
nc.variables['time'].standard_name = 'time'
# Projection
nc.createVariable('projection', 'i8')
nc.variables['projection'].proj4 = density_proj.definition_string()
# Coordinates
nc.createVariable('lon', 'f8', ('y', 'x'))
nc.createVariable('lat', 'f8', ('y', 'x'))
nc.variables['lon'][:] = lon_array.T
nc.variables['lon'].long_name = 'longitude'
nc.variables['lon'].short_name = 'longitude'
nc.variables['lon'].units = 'degrees_east'
nc.variables['lat'][:] = lat_array.T
nc.variables['lat'].long_name = 'latitude'
nc.variables['lat'].short_name = 'latitude'
nc.variables['lat'].units = 'degrees_north'
# Density
nc.createVariable('density_surface', 'u1', ('time', 'y', 'x'))
H = np.swapaxes(H, 1, 2).astype('uint8')
H = np.ma.masked_where(H == 0, H)
nc.variables['density_surface'][:] = H
nc.variables['density_surface'].long_name = 'Detection probability'
nc.variables['density_surface'].grid_mapping = 'projection'
nc.variables['density_surface'].units = '1'
# Density submerged
nc.createVariable('density_submerged', 'u1', ('time', 'y', 'x'))
H_sub = np.swapaxes(H_submerged, 1, 2).astype('uint8')
H_sub = np.ma.masked_where(H_sub == 0, H_sub)
nc.variables['density_submerged'][:] = H_sub
nc.variables[
'density_submerged'].long_name = 'Detection probability submerged'
nc.variables['density_submerged'].grid_mapping = 'projection'
nc.variables['density_submerged'].units = '1'
# Density stranded
nc.createVariable('density_stranded', 'u1', ('time', 'y', 'x'))
H_stranded = np.swapaxes(H_stranded, 1, 2).astype('uint8')
H_stranded = np.ma.masked_where(H_stranded == 0, H_stranded)
nc.variables['density_stranded'][:] = H_stranded
nc.variables[
'density_stranded'].long_name = 'Detection probability stranded'
nc.variables['density_stranded'].grid_mapping = 'projection'
nc.variables['density_stranded'].units = '1'
nc.close()
[docs]
def write_geotiff(self, filename, pixelsize_km=.2):
'''Write one GeoTiff image per timestep.
filename should contain date identifiers, e.g. 'img_%Y%m%d_%H%M.tif'
https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior
'''
try:
from osgeo import gdal, osr
except:
raise ValueError('GDAL is needed to write geotiff images.')
import matplotlib.pyplot as plt
driver = gdal.GetDriverByName('GTiff')
srs = osr.SpatialReference()
srs.ImportFromEPSG(4326)
colortable = gdal.ColorTable()
colortable.SetColorEntry(0, (255, 255, 255, 0))
colortable.SetColorEntry(1, (0, 0, 0, 255))
colortable.SetColorEntry(2, (255, 0, 0, 255))
colortable.SetColorEntry(3, (0, 255, 0, 255))
colortable.SetColorEntry(4, (0, 0, 255, 255))
lon = self.get_property('lon')[0]
lat = self.get_property('lat')[0]
status = self.get_property('status')[0]
times = self.get_time_array()[0]
deltalat = pixelsize_km / 111.0 # km to degrees
deltalon = deltalat / np.cos(np.radians((lat.min() + lat.max()) / 2))
lat_array = np.arange(lat.min() - deltalat,
lat.max() + deltalat, deltalat)
lon_array = np.arange(lon.min() - deltalat,
lon.max() + deltalon, deltalon)
ilon = (np.round((lon - lon.min()) / deltalon)).astype(int)
ilat = (np.round((lat - lat.min()) / deltalat)).astype(int)
# Setting masked values to zero, for use as indices
ilon[ilon.mask] = 0
ilat[ilat.mask] = 0
status[ilon.mask] = 0
image = np.zeros(
(len(times), len(lon_array), len(lat_array))).astype(int)
geotransform = [
lon_array.min(), deltalon, 0,
lat_array.max(), 0, -deltalat
]
for i, t in enumerate(times):
image[i, ilon[i, :], ilat[i, :]] = status[i, :] + 1
filename_i = t.strftime(filename)
ds = driver.Create(
filename_i,
len(lon_array),
len(lat_array),
1,
gdal.GDT_Byte,
)
ds.SetProjection(srs.ExportToWkt())
ds.SetGeoTransform(geotransform)
outband = ds.GetRasterBand(1)
outband.SetNoDataValue(0)
outband.WriteArray(np.fliplr(image[i, :, :]).transpose())
outband.SetColorTable(colortable)
ds = None
[docs]
def get_time_array(self):
"""Return a list of output times of last run."""
# Making sure start_time is datetime, and not cftime object
self.start_time = datetime(self.start_time.year, self.start_time.month,
self.start_time.day, self.start_time.hour,
self.start_time.minute,
self.start_time.second)
td = self.time_step_output
time_array = [
self.start_time + td * i for i in range(self.steps_output)
]
time_array_relative = [td * i for i in range(self.steps_output)]
return time_array, time_array_relative
[docs]
def simulation_direction(self):
"""Return 1 for a forward simulation, and -1 for a backward simulation"""
if self.time_step.days < 0:
return -1
else:
return 1
[docs]
@require_mode(mode=Mode.Result)
def plot_environment(self, filename=None, ax=None, show=True):
"""Plot mean wind and current velocities of element of last run."""
x_wind = self.get_property('x_wind')[0]
y_wind = self.get_property('y_wind')[0]
wind = np.sqrt(x_wind**2 + y_wind**2)
x_sea_water_velocity = self.get_property('x_sea_water_velocity')[0]
y_sea_water_velocity = self.get_property('y_sea_water_velocity')[0]
current = np.sqrt(x_sea_water_velocity**2 + y_sea_water_velocity**2)
wind = np.ma.mean(wind, axis=1)
current = np.ma.mean(current, axis=1)
time, time_relative = self.get_time_array()
time = np.array([t.total_seconds() / 3600. for t in time_relative])
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(time, wind, 'b', label='Wind speed')
ax.set_ylabel('Wind speed [m/s]', color='b')
ax.set_xlim([0, time[-1]])
ax.set_ylim([0, wind.max() * 1.1])
ax2 = ax.twinx()
ax2.plot(time, current, 'r', label='Current speed')
ax2.set_ylabel('Current speed [m/s]', color='r')
ax2.set_xlim([0, time[-1]])
ax2.set_ylim([0, current.max() * 1.1])
for tl in ax.get_yticklabels():
tl.set_color('b')
for tl in ax2.get_yticklabels():
tl.set_color('r')
ax.set_xlabel('Time [hours]')
ax.legend(loc='upper left')
ax2.legend(loc='lower right')
if filename is None:
if show is True:
plt.show()
else:
plt.savefig(filename)
[docs]
@require_mode(mode=Mode.Result)
def plot_property(self, prop, filename=None, mean=False):
"""Basic function to plot time series of any element properties."""
import matplotlib.pyplot as plt
from matplotlib import dates
hfmt = dates.DateFormatter('%d %b %Y %H:%M')
fig = plt.figure()
ax = fig.gca()
ax.xaxis.set_major_formatter(hfmt)
plt.xticks(rotation='vertical')
start_time = self.start_time
# In case start_time is unsupported cftime
start_time = datetime(start_time.year, start_time.month,
start_time.day, start_time.hour,
start_time.minute, start_time.second)
times = [
start_time + n * self.time_step_output
for n in range(self.steps_output)
]
data = self.history[prop].T[0:len(times), :]
if mean is True: # Taking average over elements
data = np.mean(data, axis=1)
plt.plot(times, data)
plt.title(prop)
plt.xlabel('Time [UTC]')
try:
plt.ylabel('%s [%s]' %
(prop, self.elements.variables[prop]['units']))
except:
plt.ylabel(prop)
plt.subplots_adjust(bottom=.3)
plt.grid()
if filename is None:
plt.show()
else:
plt.savefig(filename)
[docs]
@require_mode(mode=Mode.Result)
def get_property(self, propname):
"""Get property from history, sorted by status."""
index_of_first, index_of_last = \
self.index_of_activation_and_deactivation()
prop = self.history[propname].copy()
status = self.history['status'].copy()
j = np.arange(status.shape[1])
# Fill arrays with last value before deactivation
for i in range(status.shape[0]):
status[i, j > index_of_last[i]] = status[i, index_of_last[i]]
prop[i, j > index_of_last[i]] = prop[i, index_of_last[i]]
return prop.T, status.T
[docs]
@require_mode(mode=Mode.Result)
def get_trajectory_lengths(self):
"""Calculate lengths and speeds along trajectories."""
lons = self.get_property('lon')[0]
lats = self.get_property('lat')[0]
geod = pyproj.Geod(ellps='WGS84')
a1, a2, distances = geod.inv(lons[0:-1, :], lats[0:-1, :],
lons[1::, :], lats[1::, :])
distances[np.isnan(distances)] = 0
speeds = distances / self.time_step_output.total_seconds()
distances[speeds >
100] = 0 # TODO: need better way to mask invalid distances
speeds[speeds > 100] = 0 # due to masked lons/lats arrays
total_length = np.cumsum(distances, 0)[-1, :]
return total_length, distances, speeds
[docs]
@require_mode(mode=Mode.Run)
def update_positions(self, x_vel, y_vel):
"""Move particles according to given velocity components.
This method shall account for projection metrics (a distance
on a map projection does not necessarily correspond to the same
distance over true ground (not yet implemented).
Arguments:
x_vel and v_vel: floats, velocities in m/s of particle along
x- and y-axes of the inherit SRS (proj4).
"""
geod = pyproj.Geod(ellps='WGS84')
azimuth = np.degrees(np.arctan2(x_vel, y_vel)) # Direction of motion
velocity = np.sqrt(x_vel**2 + y_vel**2) # Velocity in m/s
velocity = velocity * self.elements.moving # Do not move frosen elements
# Calculate new positions
self.elements.lon, self.elements.lat, back_az = geod.fwd(
self.elements.lon, self.elements.lat, azimuth,
velocity * self.time_step.total_seconds())
# Check that new positions are valid
if (self.elements.lon.min()
< -180) or (self.elements.lon.min()
> 360) or (self.elements.lat.min()
< -90) or (self.elements.lat.max()
> 90):
logger.info('Invalid new coordinates:')
logger.info(self.elements)
sys.exit('Quitting')
[docs]
def plot_memory_usage(self, filename=None):
plt.plot(self.memory_usage)
plt.ylabel('Virtual memory [GB]')
plt.xlabel('Calculation time step')
if filename is None:
plt.show()
else:
plt.savefig(filename)
plt.close()
[docs]
def __repr__(self):
"""String representation providing overview of model status."""
outStr = '===========================\n'
if self.history is not None:
outStr += self.performance()
outStr += '===========================\n'
outStr += 'Model:\t' + type(self).__name__ + \
' (OpenDrift version %s)\n' % opendrift.__version__
outStr += '\t%s active %s particles (%s deactivated, %s scheduled)\n'\
% (self.num_elements_active(), self.ElementType.__name__,
self.num_elements_deactivated(), self.num_elements_scheduled())
variable_groups, reader_groups, missing = self.env.get_reader_groups()
outStr += '-------------------\n'
outStr += 'Environment variables:\n'
for i, variableGroup in enumerate(variable_groups):
outStr += ' -----\n'
readerGroup = reader_groups[i]
for variable in sorted(variableGroup):
outStr += ' ' + variable + '\n'
for i, reader in enumerate(readerGroup):
outStr += ' ' + str(i + 1) + ') ' + reader + '\n'
if len(self.env.missing_variables()) > 0:
outStr += ' -----\n'
outStr += 'Readers not added for the following variables:\n'
for variable in sorted(self.env.missing_variables()):
outStr += ' ' + variable + '\n'
lazy_readers = [
r for r in self.env.readers if self.env.readers[r].is_lazy is True
]
if len(lazy_readers) > 0:
outStr += '---\nLazy readers:\n'
for lr in lazy_readers:
outStr += ' ' + lr + '\n'
outStr += '\nDiscarded readers:\n'
for dr, reason in self.env.discarded_readers.items():
outStr += ' %s (%s)\n' % (dr, reason)
if hasattr(self, 'time'):
outStr += '\nTime:\n'
outStr += '\tStart: %s UTC\n' % (self.start_time)
outStr += '\tPresent: %s UTC\n' % (self.time)
if hasattr(self, 'time_step'):
outStr += '\tCalculation steps: %i * %s - total time: %s\n' % (
self.steps_calculation, self.time_step,
self.time - self.start_time)
outStr += '\tOutput steps: %i * %s\n' % (self.steps_output,
self.time_step_output)
if hasattr(self, 'messages'):
outStr += '-------------------\n'
outStr += self.get_messages()
outStr += '===========================\n'
return outStr
[docs]
def store_message(self, message):
"""Store important messages to be displayed to user at end."""
if not hasattr(self, 'messages'):
self.messages = []
self.messages.append(message)
[docs]
def get_messages(self):
"""Report any messages stored during simulation."""
if hasattr(self, 'messages'):
return str(self.messages).strip('[]') + '\n'
else:
return ''
[docs]
def add_halo_readers(self):
"""Adding some Thredds and file readers in prioritised order"""
self.add_readers_from_file(self.test_data_folder() +
'../../opendrift/scripts/data_sources.txt')
[docs]
def _sphinx_gallery_filename(self, stack_offset=3):
# This assumes that the calling script is three frames up in the stack.
# called through a more deeply nested method stack_offset has to be changed.
caller = inspect.stack()[stack_offset]
caller = os.path.splitext(os.path.basename(caller.filename))[0]
# Calling script is string input (e.g. from ..plot::)
if caller == '<string>':
caller = 'plot_directive'
adir = os.path.realpath('../source/gallery/animations')
else:
adir = os.path.realpath('../docs/source/gallery/animations')
if not hasattr(OpenDriftSimulation, '__anim_no__'):
OpenDriftSimulation.__anim_no__ = {}
if caller not in OpenDriftSimulation.__anim_no__:
OpenDriftSimulation.__anim_no__[caller] = 0
os.makedirs(adir, exist_ok=True)
filename = '%s_%d.gif' % (caller,
OpenDriftSimulation.__anim_no__[caller])
OpenDriftSimulation.__anim_no__[caller] += 1
filename = os.path.join(adir, filename)
return filename
[docs]
def __save_animation__(self, fig, plot_timestep, filename, frames, fps,
blit, interval):
if filename is None or 'sphinx_gallery' in sys.modules:
stack_offset = 4
import gc
fr = sys._getframe(2)
for o in gc.get_objects():
if inspect.isfunction(o) and o.__code__ is fr.f_code:
if hasattr(getattr(self, o.__name__), '__wrapped__'):
stack_offset = 5
filename = self._sphinx_gallery_filename(stack_offset=stack_offset)
logger.info('Saving animation to ' + str(filename) + '...')
start_time = datetime.now()
writer = None
if str(filename)[-4:] == '.gif':
writer = animation.PillowWriter(fps=fps)
# writer=animation.ImageMagickWriter(fps=fps)
elif str(filename)[-4:] == '.mp4':
writer = animation.FFMpegWriter(
fps=fps,
codec='libx264',
bitrate=1800,
extra_args=[
'-profile:v',
'baseline',
'-vf',
'crop=trunc(iw/2)*2:trunc(ih/2)*2', # cropping 1 pixel if not even
'-pix_fmt',
'yuv420p',
'-an'
])
else:
# fallback to using funcwriter
anim = animation.FuncAnimation(fig,
plot_timestep,
blit=blit,
frames=frames,
interval=interval)
anim.save(filename)
if writer is not None:
with writer.saving(fig, filename, None):
for i in frames if isinstance(frames, (list, range)) else range(frames):
plot_timestep(i)
writer.grab_frame()
logger.debug(f"MPLBACKEND = {matplotlib.get_backend()}")
logger.debug(f"DISPLAY = {os.environ.get('DISPLAY', 'None')}")
logger.debug('Time to save animation: %s' %
(datetime.now() - start_time))
plt.close()
[docs]
def calculate_ftle(self,
reader=None,
delta=None,
domain=None,
time=None,
time_step=None,
duration=None,
z=0,
RLCS=True,
ALCS=True):
if reader is None:
logger.info('No reader provided, using first available:')
reader = list(self.env.readers.items())[0][1]
logger.info(reader.name)
if isinstance(reader, pyproj.Proj):
proj = reader
elif isinstance(reader, str):
proj = pyproj.Proj(reader)
else:
proj = reader.proj
from opendrift.models.physics_methods import ftle
if not isinstance(duration, timedelta):
duration = timedelta(seconds=duration)
if domain == None:
xs = np.arange(reader.xmin, reader.xmax, delta)
ys = np.arange(reader.ymin, reader.ymax, delta)
else:
xmin, xmax, ymin, ymax = domain
xs = np.arange(xmin, xmax, delta)
ys = np.arange(ymin, ymax, delta)
X, Y = np.meshgrid(xs, ys)
lons, lats = proj(X, Y, inverse=True)
if time is None:
time = reader.start_time
if not isinstance(time, list):
time = [time]
# dictionary to hold LCS calculation
lcs = {'time': time, 'lon': lons, 'lat': lats}
lcs['RLCS'] = np.zeros((len(time), len(ys), len(xs)))
lcs['ALCS'] = np.zeros((len(time), len(ys), len(xs)))
T = np.abs(duration.total_seconds())
for i, t in enumerate(time):
logger.info('Calculating LCS for ' + str(t))
# Forwards
if RLCS is True:
o = self.clone()
o.seed_elements(lons.ravel(), lats.ravel(), time=t, z=z)
o.run(duration=duration, time_step=time_step)
f_x1, f_y1 = proj(o.history['lon'].T[-1].reshape(X.shape),
o.history['lat'].T[-1].reshape(X.shape))
lcs['RLCS'][i, :, :] = ftle(f_x1 - X, f_y1 - Y, delta, T)
# Backwards
if ALCS is True:
o = self.clone()
o.seed_elements(lons.ravel(),
lats.ravel(),
time=t + duration,
z=z)
o.run(duration=duration, time_step=-time_step)
b_x1, b_y1 = proj(o.history['lon'].T[-1][::-1].reshape(X.shape),
o.history['lat'].T[-1][::-1].reshape(X.shape))
lcs['ALCS'][i, :, :] = ftle(b_x1 - X, b_y1 - Y, delta, T)
lcs['RLCS'] = np.ma.masked_invalid(lcs['RLCS'])
lcs['ALCS'] = np.ma.masked_invalid(lcs['ALCS'])
# Flipping ALCS left-right. Not sure why this is needed
# >> not needed anymore now that re-ordering is done above
# lcs['ALCS'] = lcs['ALCS'][:, ::-1, ::-1]
return lcs
[docs]
def center_of_gravity(self, onlysurface=False):
"""
calculate center of mass and variance of all elements
returns (lon,lat), variance
where (lon,lat) are the coordinates of the center of mass as
function of time"""
#lon,lat = self.get_property('lon')[0], self.get_property('lat')[0]
lon, lat = self.history['lon'], self.history['lat']
x, y = self.proj_latlon(lon, lat)
if onlysurface == True:
z = self.history['z']
submerged = z < 0
x = np.ma.array(x, mask=submerged)
y = np.ma.array(y, mask=submerged)
# center of gravity:
x_m, y_m = np.ma.mean(x, axis=0), np.ma.mean(y, axis=0)
center = self.proj_latlon(x_m, y_m, inverse=True)
one = np.ones_like(x)
# variance:
variance = np.ma.mean((x - x_m * one)**2 + (y - y_m * one)**2, axis=0)
return center, variance
[docs]
def gui_postproc(self):
'''To be overloaded by subclasses'''
pass